view mercurial/similar.py @ 42581:bb135a784b70

abort: added logic for of hg abort This is part of `GSoC19` project `Implement abort and continue commands`. This patch is part of the `abort plan`. This adds the basic logic for `hg abort`. This command aborts an multistep operation like graft, histedit, rebase, merge and unshelve if they are in an unfinished state. The first part of the logic is determining the unfinished operation from the state detection API under `statemod`. This API is extended to support `hg abort` by adding a method to register the abort logic as a function (here `abortfunc`). Once the unfinished operation is determined the registered logic is used to abort the command. The benefit of this kind of framework is that any new extension developed can support `hg abort` by registering the command and logic under statedetection API. `hg abort` currently supports `--dry-run/-n` flag only. It is used to dry run `hg abort` Further patches sequentially add support for `graft`, `rebase`, `unshelve`, `histedit` and `merge`. Differential Revision: https://phab.mercurial-scm.org/D6566
author Taapas Agrawal <taapas2897@gmail.com>
date Sun, 23 Jun 2019 20:58:01 +0530
parents 59c9d3cc810f
children 2372284d9457
line wrap: on
line source

# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

from .i18n import _
from . import (
    mdiff,
)

def _findexactmatches(repo, added, removed):
    '''find renamed files that have no changes

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after) tuples of exact matches.
    '''
    # Build table of removed files: {hash(fctx.data()): [fctx, ...]}.
    # We use hash() to discard fctx.data() from memory.
    hashes = {}
    progress = repo.ui.makeprogress(_('searching for exact renames'),
                                    total=(len(added) + len(removed)),
                                    unit=_('files'))
    for fctx in removed:
        progress.increment()
        h = hash(fctx.data())
        if h not in hashes:
            hashes[h] = [fctx]
        else:
            hashes[h].append(fctx)

    # For each added file, see if it corresponds to a removed file.
    for fctx in added:
        progress.increment()
        adata = fctx.data()
        h = hash(adata)
        for rfctx in hashes.get(h, []):
            # compare between actual file contents for exact identity
            if adata == rfctx.data():
                yield (rfctx, fctx)
                break

    # Done
    progress.complete()

def _ctxdata(fctx):
    # lazily load text
    orig = fctx.data()
    return orig, mdiff.splitnewlines(orig)

def _score(fctx, otherdata):
    orig, lines = otherdata
    text = fctx.data()
    # mdiff.blocks() returns blocks of matching lines
    # count the number of bytes in each
    equal = 0
    matches = mdiff.blocks(text, orig)
    for x1, x2, y1, y2 in matches:
        for line in lines[y1:y2]:
            equal += len(line)

    lengths = len(text) + len(orig)
    return equal * 2.0 / lengths

def score(fctx1, fctx2):
    return _score(fctx1, _ctxdata(fctx2))

def _findsimilarmatches(repo, added, removed, threshold):
    '''find potentially renamed files based on similar file content

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after, score) tuples of partial matches.
    '''
    copies = {}
    progress = repo.ui.makeprogress(_('searching for similar files'),
                         unit=_('files'), total=len(removed))
    for r in removed:
        progress.increment()
        data = None
        for a in added:
            bestscore = copies.get(a, (None, threshold))[1]
            if data is None:
                data = _ctxdata(r)
            myscore = _score(a, data)
            if myscore > bestscore:
                copies[a] = (r, myscore)
    progress.complete()

    for dest, v in copies.iteritems():
        source, bscore = v
        yield source, dest, bscore

def _dropempty(fctxs):
    return [x for x in fctxs if x.size() > 0]

def findrenames(repo, added, removed, threshold):
    '''find renamed files -- yields (before, after, score) tuples'''
    wctx = repo[None]
    pctx = wctx.p1()

    # Zero length files will be frequently unrelated to each other, and
    # tracking the deletion/addition of such a file will probably cause more
    # harm than good. We strip them out here to avoid matching them later on.
    addedfiles = _dropempty(wctx[fp] for fp in sorted(added))
    removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx)

    # Find exact matches.
    matchedfiles = set()
    for (a, b) in _findexactmatches(repo, addedfiles, removedfiles):
        matchedfiles.add(b)
        yield (a.path(), b.path(), 1.0)

    # If the user requested similar files to be matched, search for them also.
    if threshold < 1.0:
        addedfiles = [x for x in addedfiles if x not in matchedfiles]
        for (a, b, score) in _findsimilarmatches(repo, addedfiles,
                                                 removedfiles, threshold):
            yield (a.path(), b.path(), score)