view mercurial/similar.py @ 38732:be4984261611

merge: mark file gets as not thread safe (issue5933) In default installs, this has the effect of disabling the thread-based worker on Windows when manifesting files in the working directory. My measurements have shown that with revlog-based repositories, Mercurial spends a lot of CPU time in revlog code resolving file data. This ends up incurring a lot of context switching across threads and slows down `hg update` operations when going from an empty working directory to the tip of the repo. On mozilla-unified (246,351 files) on an i7-6700K (4+4 CPUs): before: 487s wall after: 360s wall (equivalent to worker.enabled=false) cpus=2: 379s wall Even with only 2 threads, the thread pool is still slower. The introduction of the thread-based worker (02b36e860e0b) states that it resulted in a "~50%" speedup for `hg sparse --enable-profile` and `hg sparse --disable-profile`. This disagrees with my measurement above. I theorize a few reasons for this: 1) Removal of files from the working directory is I/O - not CPU - bound and should benefit from a thread pool (unless I/O is insanely fast and the GIL release is near instantaneous). So tests like `hg sparse --enable-profile` may exercise deletion throughput and aren't good benchmarks for worker tasks that are CPU heavy. 2) The patch was authored by someone at Facebook. The results were likely measured against a repository using remotefilelog. And I believe that revision retrieval during working directory updates with remotefilelog will often use a remote store, thus being I/O and not CPU bound. This probably resulted in an overstated performance gain. Since there appears to be a need to enable the thread-based worker with some stores, I've made the flagging of file gets as thread safe configurable. I've made it experimental because I don't want to formalize a boolean flag for this option and because this attribute is best captured against the store implementation. But we don't have a proper store API for this yet. I'd rather cross this bridge later. It is possible there are revlog-based repositories that do benefit from a thread-based worker. I didn't do very comprehensive testing. If there are, we may want to devise a more proper algorithm for whether to use the thread-based worker, including possibly config options to limit the number of threads to use. But until I see evidence that justifies complexity, simplicity wins. Differential Revision: https://phab.mercurial-scm.org/D3963
author Gregory Szorc <gregory.szorc@gmail.com>
date Wed, 18 Jul 2018 09:49:34 -0700
parents 59c9d3cc810f
children 2372284d9457
line wrap: on
line source

# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

from .i18n import _
from . import (
    mdiff,
)

def _findexactmatches(repo, added, removed):
    '''find renamed files that have no changes

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after) tuples of exact matches.
    '''
    # Build table of removed files: {hash(fctx.data()): [fctx, ...]}.
    # We use hash() to discard fctx.data() from memory.
    hashes = {}
    progress = repo.ui.makeprogress(_('searching for exact renames'),
                                    total=(len(added) + len(removed)),
                                    unit=_('files'))
    for fctx in removed:
        progress.increment()
        h = hash(fctx.data())
        if h not in hashes:
            hashes[h] = [fctx]
        else:
            hashes[h].append(fctx)

    # For each added file, see if it corresponds to a removed file.
    for fctx in added:
        progress.increment()
        adata = fctx.data()
        h = hash(adata)
        for rfctx in hashes.get(h, []):
            # compare between actual file contents for exact identity
            if adata == rfctx.data():
                yield (rfctx, fctx)
                break

    # Done
    progress.complete()

def _ctxdata(fctx):
    # lazily load text
    orig = fctx.data()
    return orig, mdiff.splitnewlines(orig)

def _score(fctx, otherdata):
    orig, lines = otherdata
    text = fctx.data()
    # mdiff.blocks() returns blocks of matching lines
    # count the number of bytes in each
    equal = 0
    matches = mdiff.blocks(text, orig)
    for x1, x2, y1, y2 in matches:
        for line in lines[y1:y2]:
            equal += len(line)

    lengths = len(text) + len(orig)
    return equal * 2.0 / lengths

def score(fctx1, fctx2):
    return _score(fctx1, _ctxdata(fctx2))

def _findsimilarmatches(repo, added, removed, threshold):
    '''find potentially renamed files based on similar file content

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after, score) tuples of partial matches.
    '''
    copies = {}
    progress = repo.ui.makeprogress(_('searching for similar files'),
                         unit=_('files'), total=len(removed))
    for r in removed:
        progress.increment()
        data = None
        for a in added:
            bestscore = copies.get(a, (None, threshold))[1]
            if data is None:
                data = _ctxdata(r)
            myscore = _score(a, data)
            if myscore > bestscore:
                copies[a] = (r, myscore)
    progress.complete()

    for dest, v in copies.iteritems():
        source, bscore = v
        yield source, dest, bscore

def _dropempty(fctxs):
    return [x for x in fctxs if x.size() > 0]

def findrenames(repo, added, removed, threshold):
    '''find renamed files -- yields (before, after, score) tuples'''
    wctx = repo[None]
    pctx = wctx.p1()

    # Zero length files will be frequently unrelated to each other, and
    # tracking the deletion/addition of such a file will probably cause more
    # harm than good. We strip them out here to avoid matching them later on.
    addedfiles = _dropempty(wctx[fp] for fp in sorted(added))
    removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx)

    # Find exact matches.
    matchedfiles = set()
    for (a, b) in _findexactmatches(repo, addedfiles, removedfiles):
        matchedfiles.add(b)
        yield (a.path(), b.path(), 1.0)

    # If the user requested similar files to be matched, search for them also.
    if threshold < 1.0:
        addedfiles = [x for x in addedfiles if x not in matchedfiles]
        for (a, b, score) in _findsimilarmatches(repo, addedfiles,
                                                 removedfiles, threshold):
            yield (a.path(), b.path(), score)