Mercurial > hg
view mercurial/revsetlang.py @ 33941:c0bbaefc2c5a
obsolete: move merge logic on the smaller object
Refactor some logic in _succs in order to clean successorssets code.
Differential Revision: https://phab.mercurial-scm.org/D530
author | Boris Feld <boris.feld@octobus.net> |
---|---|
date | Mon, 03 Jul 2017 03:54:24 +0200 |
parents | 9467d5337292 |
children | 72b5f4d53c58 |
line wrap: on
line source
# revsetlang.py - parser, tokenizer and utility for revision set language # # Copyright 2010 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import string from .i18n import _ from . import ( error, node, parser, pycompat, util, ) elements = { # token-type: binding-strength, primary, prefix, infix, suffix "(": (21, None, ("group", 1, ")"), ("func", 1, ")"), None), "[": (21, None, None, ("subscript", 1, "]"), None), "#": (21, None, None, ("relation", 21), None), "##": (20, None, None, ("_concat", 20), None), "~": (18, None, None, ("ancestor", 18), None), "^": (18, None, None, ("parent", 18), "parentpost"), "-": (5, None, ("negate", 19), ("minus", 5), None), "::": (17, None, ("dagrangepre", 17), ("dagrange", 17), "dagrangepost"), "..": (17, None, ("dagrangepre", 17), ("dagrange", 17), "dagrangepost"), ":": (15, "rangeall", ("rangepre", 15), ("range", 15), "rangepost"), "not": (10, None, ("not", 10), None, None), "!": (10, None, ("not", 10), None, None), "and": (5, None, None, ("and", 5), None), "&": (5, None, None, ("and", 5), None), "%": (5, None, None, ("only", 5), "onlypost"), "or": (4, None, None, ("or", 4), None), "|": (4, None, None, ("or", 4), None), "+": (4, None, None, ("or", 4), None), "=": (3, None, None, ("keyvalue", 3), None), ",": (2, None, None, ("list", 2), None), ")": (0, None, None, None, None), "]": (0, None, None, None, None), "symbol": (0, "symbol", None, None, None), "string": (0, "string", None, None, None), "end": (0, None, None, None, None), } keywords = {'and', 'or', 'not'} _quoteletters = {'"', "'"} _simpleopletters = set(pycompat.iterbytestr("()[]#:=,-|&+!~^%")) # default set of valid characters for the initial letter of symbols _syminitletters = set(pycompat.iterbytestr( string.ascii_letters.encode('ascii') + string.digits.encode('ascii') + '._@')) | set(map(pycompat.bytechr, xrange(128, 256))) # default set of valid characters for non-initial letters of symbols _symletters = _syminitletters | set(pycompat.iterbytestr('-/')) def tokenize(program, lookup=None, syminitletters=None, symletters=None): ''' Parse a revset statement into a stream of tokens ``syminitletters`` is the set of valid characters for the initial letter of symbols. By default, character ``c`` is recognized as valid for initial letter of symbols, if ``c.isalnum() or c in '._@' or ord(c) > 127``. ``symletters`` is the set of valid characters for non-initial letters of symbols. By default, character ``c`` is recognized as valid for non-initial letters of symbols, if ``c.isalnum() or c in '-._/@' or ord(c) > 127``. Check that @ is a valid unquoted token character (issue3686): >>> list(tokenize("@::")) [('symbol', '@', 0), ('::', None, 1), ('end', None, 3)] ''' program = pycompat.bytestr(program) if syminitletters is None: syminitletters = _syminitletters if symletters is None: symletters = _symletters if program and lookup: # attempt to parse old-style ranges first to deal with # things like old-tag which contain query metacharacters parts = program.split(':', 1) if all(lookup(sym) for sym in parts if sym): if parts[0]: yield ('symbol', parts[0], 0) if len(parts) > 1: s = len(parts[0]) yield (':', None, s) if parts[1]: yield ('symbol', parts[1], s + 1) yield ('end', None, len(program)) return pos, l = 0, len(program) while pos < l: c = program[pos] if c.isspace(): # skip inter-token whitespace pass elif c == ':' and program[pos:pos + 2] == '::': # look ahead carefully yield ('::', None, pos) pos += 1 # skip ahead elif c == '.' and program[pos:pos + 2] == '..': # look ahead carefully yield ('..', None, pos) pos += 1 # skip ahead elif c == '#' and program[pos:pos + 2] == '##': # look ahead carefully yield ('##', None, pos) pos += 1 # skip ahead elif c in _simpleopletters: # handle simple operators yield (c, None, pos) elif (c in _quoteletters or c == 'r' and program[pos:pos + 2] in ("r'", 'r"')): # handle quoted strings if c == 'r': pos += 1 c = program[pos] decode = lambda x: x else: decode = parser.unescapestr pos += 1 s = pos while pos < l: # find closing quote d = program[pos] if d == '\\': # skip over escaped characters pos += 2 continue if d == c: yield ('string', decode(program[s:pos]), s) break pos += 1 else: raise error.ParseError(_("unterminated string"), s) # gather up a symbol/keyword elif c in syminitletters: s = pos pos += 1 while pos < l: # find end of symbol d = program[pos] if d not in symletters: break if d == '.' and program[pos - 1] == '.': # special case for .. pos -= 1 break pos += 1 sym = program[s:pos] if sym in keywords: # operator keywords yield (sym, None, s) elif '-' in sym: # some jerk gave us foo-bar-baz, try to check if it's a symbol if lookup and lookup(sym): # looks like a real symbol yield ('symbol', sym, s) else: # looks like an expression parts = sym.split('-') for p in parts[:-1]: if p: # possible consecutive - yield ('symbol', p, s) s += len(p) yield ('-', None, pos) s += 1 if parts[-1]: # possible trailing - yield ('symbol', parts[-1], s) else: yield ('symbol', sym, s) pos -= 1 else: raise error.ParseError(_("syntax error in revset '%s'") % program, pos) pos += 1 yield ('end', None, pos) # helpers _notset = object() def getsymbol(x): if x and x[0] == 'symbol': return x[1] raise error.ParseError(_('not a symbol')) def getstring(x, err): if x and (x[0] == 'string' or x[0] == 'symbol'): return x[1] raise error.ParseError(err) def getinteger(x, err, default=_notset): if not x and default is not _notset: return default try: return int(getstring(x, err)) except ValueError: raise error.ParseError(err) def getboolean(x, err): value = util.parsebool(getsymbol(x)) if value is not None: return value raise error.ParseError(err) def getlist(x): if not x: return [] if x[0] == 'list': return list(x[1:]) return [x] def getrange(x, err): if not x: raise error.ParseError(err) op = x[0] if op == 'range': return x[1], x[2] elif op == 'rangepre': return None, x[1] elif op == 'rangepost': return x[1], None elif op == 'rangeall': return None, None raise error.ParseError(err) def getargs(x, min, max, err): l = getlist(x) if len(l) < min or (max >= 0 and len(l) > max): raise error.ParseError(err) return l def getargsdict(x, funcname, keys): return parser.buildargsdict(getlist(x), funcname, parser.splitargspec(keys), keyvaluenode='keyvalue', keynode='symbol') def _isnamedfunc(x, funcname): """Check if given tree matches named function""" return x and x[0] == 'func' and getsymbol(x[1]) == funcname def _isposargs(x, n): """Check if given tree is n-length list of positional arguments""" l = getlist(x) return len(l) == n and all(y and y[0] != 'keyvalue' for y in l) def _matchnamedfunc(x, funcname): """Return args tree if given tree matches named function; otherwise None This can't be used for testing a nullary function since its args tree is also None. Use _isnamedfunc() instead. """ if not _isnamedfunc(x, funcname): return return x[2] # Constants for ordering requirement, used in _analyze(): # # If 'define', any nested functions and operations can change the ordering of # the entries in the set. If 'follow', any nested functions and operations # should take the ordering specified by the first operand to the '&' operator. # # For instance, # # X & (Y | Z) # ^ ^^^^^^^ # | follow # define # # will be evaluated as 'or(y(x()), z(x()))', where 'x()' can change the order # of the entries in the set, but 'y()', 'z()' and 'or()' shouldn't. # # 'any' means the order doesn't matter. For instance, # # X & !Y # ^ # any # # 'y()' can either enforce its ordering requirement or take the ordering # specified by 'x()' because 'not()' doesn't care the order. # # Transition of ordering requirement: # # 1. starts with 'define' # 2. shifts to 'follow' by 'x & y' # 3. changes back to 'define' on function call 'f(x)' or function-like # operation 'x (f) y' because 'f' may have its own ordering requirement # for 'x' and 'y' (e.g. 'first(x)') # anyorder = 'any' # don't care the order defineorder = 'define' # should define the order followorder = 'follow' # must follow the current order # transition table for 'x & y', from the current expression 'x' to 'y' _tofolloworder = { anyorder: anyorder, defineorder: followorder, followorder: followorder, } def _matchonly(revs, bases): """ >>> f = lambda *args: _matchonly(*map(parse, args)) >>> f('ancestors(A)', 'not ancestors(B)') ('list', ('symbol', 'A'), ('symbol', 'B')) """ ta = _matchnamedfunc(revs, 'ancestors') tb = bases and bases[0] == 'not' and _matchnamedfunc(bases[1], 'ancestors') if _isposargs(ta, 1) and _isposargs(tb, 1): return ('list', ta, tb) def _fixops(x): """Rewrite raw parsed tree to resolve ambiguous syntax which cannot be handled well by our simple top-down parser""" if not isinstance(x, tuple): return x op = x[0] if op == 'parent': # x^:y means (x^) : y, not x ^ (:y) # x^: means (x^) :, not x ^ (:) post = ('parentpost', x[1]) if x[2][0] == 'dagrangepre': return _fixops(('dagrange', post, x[2][1])) elif x[2][0] == 'rangepre': return _fixops(('range', post, x[2][1])) elif x[2][0] == 'rangeall': return _fixops(('rangepost', post)) elif op == 'or': # make number of arguments deterministic: # x + y + z -> (or x y z) -> (or (list x y z)) return (op, _fixops(('list',) + x[1:])) elif op == 'subscript' and x[1][0] == 'relation': # x#y[z] ternary return _fixops(('relsubscript', x[1][1], x[1][2], x[2])) return (op,) + tuple(_fixops(y) for y in x[1:]) def _analyze(x, order): if x is None: return x op = x[0] if op == 'minus': return _analyze(('and', x[1], ('not', x[2])), order) elif op == 'only': t = ('func', ('symbol', 'only'), ('list', x[1], x[2])) return _analyze(t, order) elif op == 'onlypost': return _analyze(('func', ('symbol', 'only'), x[1]), order) elif op == 'dagrangepre': return _analyze(('func', ('symbol', 'ancestors'), x[1]), order) elif op == 'dagrangepost': return _analyze(('func', ('symbol', 'descendants'), x[1]), order) elif op == 'negate': s = getstring(x[1], _("can't negate that")) return _analyze(('string', '-' + s), order) elif op in ('string', 'symbol'): return x elif op == 'and': ta = _analyze(x[1], order) tb = _analyze(x[2], _tofolloworder[order]) return (op, ta, tb, order) elif op == 'or': return (op, _analyze(x[1], order), order) elif op == 'not': return (op, _analyze(x[1], anyorder), order) elif op == 'rangeall': return (op, None, order) elif op in ('rangepre', 'rangepost', 'parentpost'): return (op, _analyze(x[1], defineorder), order) elif op == 'group': return _analyze(x[1], order) elif op in ('dagrange', 'range', 'parent', 'ancestor', 'relation', 'subscript'): ta = _analyze(x[1], defineorder) tb = _analyze(x[2], defineorder) return (op, ta, tb, order) elif op == 'relsubscript': ta = _analyze(x[1], defineorder) tb = _analyze(x[2], defineorder) tc = _analyze(x[3], defineorder) return (op, ta, tb, tc, order) elif op == 'list': return (op,) + tuple(_analyze(y, order) for y in x[1:]) elif op == 'keyvalue': return (op, x[1], _analyze(x[2], order)) elif op == 'func': f = getsymbol(x[1]) d = defineorder if f == 'present': # 'present(set)' is known to return the argument set with no # modification, so forward the current order to its argument d = order return (op, x[1], _analyze(x[2], d), order) raise ValueError('invalid operator %r' % op) def analyze(x, order=defineorder): """Transform raw parsed tree to evaluatable tree which can be fed to optimize() or getset() All pseudo operations should be mapped to real operations or functions defined in methods or symbols table respectively. 'order' specifies how the current expression 'x' is ordered (see the constants defined above.) """ return _analyze(x, order) def _optimize(x, small): if x is None: return 0, x smallbonus = 1 if small: smallbonus = .5 op = x[0] if op in ('string', 'symbol'): return smallbonus, x # single revisions are small elif op == 'and': wa, ta = _optimize(x[1], True) wb, tb = _optimize(x[2], True) order = x[3] w = min(wa, wb) # (::x and not ::y)/(not ::y and ::x) have a fast path tm = _matchonly(ta, tb) or _matchonly(tb, ta) if tm: return w, ('func', ('symbol', 'only'), tm, order) if tb is not None and tb[0] == 'not': return wa, ('difference', ta, tb[1], order) if wa > wb: return w, (op, tb, ta, order) return w, (op, ta, tb, order) elif op == 'or': # fast path for machine-generated expression, that is likely to have # lots of trivial revisions: 'a + b + c()' to '_list(a b) + c()' order = x[2] ws, ts, ss = [], [], [] def flushss(): if not ss: return if len(ss) == 1: w, t = ss[0] else: s = '\0'.join(t[1] for w, t in ss) y = ('func', ('symbol', '_list'), ('string', s), order) w, t = _optimize(y, False) ws.append(w) ts.append(t) del ss[:] for y in getlist(x[1]): w, t = _optimize(y, False) if t is not None and (t[0] == 'string' or t[0] == 'symbol'): ss.append((w, t)) continue flushss() ws.append(w) ts.append(t) flushss() if len(ts) == 1: return ws[0], ts[0] # 'or' operation is fully optimized out if order != defineorder: # reorder by weight only when f(a + b) == f(b + a) ts = [wt[1] for wt in sorted(zip(ws, ts), key=lambda wt: wt[0])] return max(ws), (op, ('list',) + tuple(ts), order) elif op == 'not': # Optimize not public() to _notpublic() because we have a fast version if x[1][:3] == ('func', ('symbol', 'public'), None): order = x[1][3] newsym = ('func', ('symbol', '_notpublic'), None, order) o = _optimize(newsym, not small) return o[0], o[1] else: o = _optimize(x[1], not small) order = x[2] return o[0], (op, o[1], order) elif op == 'rangeall': return smallbonus, x elif op in ('rangepre', 'rangepost', 'parentpost'): o = _optimize(x[1], small) order = x[2] return o[0], (op, o[1], order) elif op in ('dagrange', 'range'): wa, ta = _optimize(x[1], small) wb, tb = _optimize(x[2], small) order = x[3] return wa + wb, (op, ta, tb, order) elif op in ('parent', 'ancestor', 'relation', 'subscript'): w, t = _optimize(x[1], small) order = x[3] return w, (op, t, x[2], order) elif op == 'relsubscript': w, t = _optimize(x[1], small) order = x[4] return w, (op, t, x[2], x[3], order) elif op == 'list': ws, ts = zip(*(_optimize(y, small) for y in x[1:])) return sum(ws), (op,) + ts elif op == 'keyvalue': w, t = _optimize(x[2], small) return w, (op, x[1], t) elif op == 'func': f = getsymbol(x[1]) wa, ta = _optimize(x[2], small) if f in ('author', 'branch', 'closed', 'date', 'desc', 'file', 'grep', 'keyword', 'outgoing', 'user', 'destination'): w = 10 # slow elif f in ('modifies', 'adds', 'removes'): w = 30 # slower elif f == "contains": w = 100 # very slow elif f == "ancestor": w = 1 * smallbonus elif f in ('reverse', 'limit', 'first', 'wdir', '_intlist'): w = 0 elif f == "sort": w = 10 # assume most sorts look at changelog else: w = 1 order = x[3] return w + wa, (op, x[1], ta, order) raise ValueError('invalid operator %r' % op) def optimize(tree): """Optimize evaluatable tree All pseudo operations should be transformed beforehand. """ _weight, newtree = _optimize(tree, small=True) return newtree # the set of valid characters for the initial letter of symbols in # alias declarations and definitions _aliassyminitletters = _syminitletters | set(pycompat.sysstr('$')) def _parsewith(spec, lookup=None, syminitletters=None): """Generate a parse tree of given spec with given tokenizing options >>> _parsewith('foo($1)', syminitletters=_aliassyminitletters) ('func', ('symbol', 'foo'), ('symbol', '$1')) >>> _parsewith('$1') Traceback (most recent call last): ... ParseError: ("syntax error in revset '$1'", 0) >>> _parsewith('foo bar') Traceback (most recent call last): ... ParseError: ('invalid token', 4) """ p = parser.parser(elements) tree, pos = p.parse(tokenize(spec, lookup=lookup, syminitletters=syminitletters)) if pos != len(spec): raise error.ParseError(_('invalid token'), pos) return _fixops(parser.simplifyinfixops(tree, ('list', 'or'))) class _aliasrules(parser.basealiasrules): """Parsing and expansion rule set of revset aliases""" _section = _('revset alias') @staticmethod def _parse(spec): """Parse alias declaration/definition ``spec`` This allows symbol names to use also ``$`` as an initial letter (for backward compatibility), and callers of this function should examine whether ``$`` is used also for unexpected symbols or not. """ return _parsewith(spec, syminitletters=_aliassyminitletters) @staticmethod def _trygetfunc(tree): if tree[0] == 'func' and tree[1][0] == 'symbol': return tree[1][1], getlist(tree[2]) def expandaliases(tree, aliases, warn=None): """Expand aliases in a tree, aliases is a list of (name, value) tuples""" aliases = _aliasrules.buildmap(aliases) tree = _aliasrules.expand(aliases, tree) # warn about problematic (but not referred) aliases if warn is not None: for name, alias in sorted(aliases.iteritems()): if alias.error and not alias.warned: warn(_('warning: %s\n') % (alias.error)) alias.warned = True return tree def foldconcat(tree): """Fold elements to be concatenated by `##` """ if not isinstance(tree, tuple) or tree[0] in ('string', 'symbol'): return tree if tree[0] == '_concat': pending = [tree] l = [] while pending: e = pending.pop() if e[0] == '_concat': pending.extend(reversed(e[1:])) elif e[0] in ('string', 'symbol'): l.append(e[1]) else: msg = _("\"##\" can't concatenate \"%s\" element") % (e[0]) raise error.ParseError(msg) return ('string', ''.join(l)) else: return tuple(foldconcat(t) for t in tree) def parse(spec, lookup=None): return _parsewith(spec, lookup=lookup) def _quote(s): r"""Quote a value in order to make it safe for the revset engine. >>> _quote('asdf') "'asdf'" >>> _quote("asdf'\"") '\'asdf\\\'"\'' >>> _quote('asdf\'') "'asdf\\''" >>> _quote(1) "'1'" """ return "'%s'" % util.escapestr(pycompat.bytestr(s)) def formatspec(expr, *args): ''' This is a convenience function for using revsets internally, and escapes arguments appropriately. Aliases are intentionally ignored so that intended expression behavior isn't accidentally subverted. Supported arguments: %r = revset expression, parenthesized %d = int(arg), no quoting %s = string(arg), escaped and single-quoted %b = arg.branch(), escaped and single-quoted %n = hex(arg), single-quoted %% = a literal '%' Prefixing the type with 'l' specifies a parenthesized list of that type. >>> formatspec('%r:: and %lr', '10 or 11', ("this()", "that()")) '(10 or 11):: and ((this()) or (that()))' >>> formatspec('%d:: and not %d::', 10, 20) '10:: and not 20::' >>> formatspec('%ld or %ld', [], [1]) "_list('') or 1" >>> formatspec('keyword(%s)', 'foo\\xe9') "keyword('foo\\\\xe9')" >>> b = lambda: 'default' >>> b.branch = b >>> formatspec('branch(%b)', b) "branch('default')" >>> formatspec('root(%ls)', ['a', 'b', 'c', 'd']) "root(_list('a\\x00b\\x00c\\x00d'))" ''' def argtype(c, arg): if c == 'd': return '%d' % int(arg) elif c == 's': return _quote(arg) elif c == 'r': parse(arg) # make sure syntax errors are confined return '(%s)' % arg elif c == 'n': return _quote(node.hex(arg)) elif c == 'b': return _quote(arg.branch()) def listexp(s, t): l = len(s) if l == 0: return "_list('')" elif l == 1: return argtype(t, s[0]) elif t == 'd': return "_intlist('%s')" % "\0".join('%d' % int(a) for a in s) elif t == 's': return "_list('%s')" % "\0".join(s) elif t == 'n': return "_hexlist('%s')" % "\0".join(node.hex(a) for a in s) elif t == 'b': return "_list('%s')" % "\0".join(a.branch() for a in s) m = l // 2 return '(%s or %s)' % (listexp(s[:m], t), listexp(s[m:], t)) expr = pycompat.bytestr(expr) ret = '' pos = 0 arg = 0 while pos < len(expr): c = expr[pos] if c == '%': pos += 1 d = expr[pos] if d == '%': ret += d elif d in 'dsnbr': ret += argtype(d, args[arg]) arg += 1 elif d == 'l': # a list of some type pos += 1 d = expr[pos] ret += listexp(list(args[arg]), d) arg += 1 else: raise error.Abort(_('unexpected revspec format character %s') % d) else: ret += c pos += 1 return ret def prettyformat(tree): return parser.prettyformat(tree, ('string', 'symbol')) def depth(tree): if isinstance(tree, tuple): return max(map(depth, tree)) + 1 else: return 0 def funcsused(tree): if not isinstance(tree, tuple) or tree[0] in ('string', 'symbol'): return set() else: funcs = set() for s in tree[1:]: funcs |= funcsused(s) if tree[0] == 'func': funcs.add(tree[1][1]) return funcs