contrib/python-zstandard/zstd/dictBuilder/zdict.c
author Gregory Szorc <gregory.szorc@gmail.com>
Tue, 07 Feb 2017 23:24:47 -0800
changeset 30895 c32454d69b85
parent 30822 b54a2984cdd4
child 37495 b1fb341d8a61
permissions -rw-r--r--
zstd: vendor python-zstandard 0.7.0 Commit 3054ae3a66112970a091d3939fee32c2d0c1a23e from https://github.com/indygreg/python-zstandard is imported without modifications (other than removing unwanted files). The vendored zstd library within has been upgraded from 1.1.2 to 1.1.3. This version introduced new APIs for threads, thread pools, multi-threaded compression, and a new dictionary builder (COVER). These features are not yet used by python-zstandard (or Mercurial for that matter). However, that will likely change in the next python-zstandard release (and I think there are opportunities for Mercurial to take advantage of the multi-threaded APIs). Relevant to Mercurial, the CFFI bindings are now fully implemented. This means zstd should "just work" with PyPy (although I haven't tried). The python-zstandard test suite also runs all tests against both the C extension and CFFI bindings to ensure feature parity. There is also a "decompress_content_dict_chain()" API. This was derived from discussions with Yann Collet on list about alternate ways of encoding delta chains. The change most relevant to Mercurial is a performance enhancement in the simple decompression API to reuse a data structure across operations. This makes decompression of multiple inputs significantly faster. (This scenario occurs when reading revlog delta chains, for example.) Using python-zstandard's bench.py to measure the performance difference... On changelog chunks in the mozilla-unified repo: decompress discrete decompress() reuse zctx 1.262243 wall; 1.260000 CPU; 1.260000 user; 0.000000 sys 170.43 MB/s (best of 3) 0.949106 wall; 0.950000 CPU; 0.950000 user; 0.000000 sys 226.66 MB/s (best of 4) decompress discrete dict decompress() reuse zctx 0.692170 wall; 0.690000 CPU; 0.690000 user; 0.000000 sys 310.80 MB/s (best of 5) 0.437088 wall; 0.440000 CPU; 0.440000 user; 0.000000 sys 492.17 MB/s (best of 7) On manifest chunks in the mozilla-unified repo: decompress discrete decompress() reuse zctx 1.367284 wall; 1.370000 CPU; 1.370000 user; 0.000000 sys 274.01 MB/s (best of 3) 1.086831 wall; 1.080000 CPU; 1.080000 user; 0.000000 sys 344.72 MB/s (best of 3) decompress discrete dict decompress() reuse zctx 0.993272 wall; 0.990000 CPU; 0.990000 user; 0.000000 sys 377.19 MB/s (best of 3) 0.678651 wall; 0.680000 CPU; 0.680000 user; 0.000000 sys 552.06 MB/s (best of 5) That should make reads on zstd revlogs a bit faster ;) # no-check-commit

/**
 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under the BSD-style license found in the
 * LICENSE file in the root directory of this source tree. An additional grant
 * of patent rights can be found in the PATENTS file in the same directory.
 */


/*-**************************************
*  Tuning parameters
****************************************/
#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
#define ZDICT_MIN_SAMPLES_SIZE 512


/*-**************************************
*  Compiler Options
****************************************/
/* Unix Large Files support (>4GB) */
#define _FILE_OFFSET_BITS 64
#if (defined(__sun__) && (!defined(__LP64__)))   /* Sun Solaris 32-bits requires specific definitions */
#  define _LARGEFILE_SOURCE
#elif ! defined(__LP64__)                        /* No point defining Large file for 64 bit */
#  define _LARGEFILE64_SOURCE
#endif


/*-*************************************
*  Dependencies
***************************************/
#include <stdlib.h>        /* malloc, free */
#include <string.h>        /* memset */
#include <stdio.h>         /* fprintf, fopen, ftello64 */
#include <time.h>          /* clock */

#include "mem.h"           /* read */
#include "fse.h"           /* FSE_normalizeCount, FSE_writeNCount */
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"           /* HUF_buildCTable, HUF_writeCTable */
#include "zstd_internal.h" /* includes zstd.h */
#include "xxhash.h"        /* XXH64 */
#include "divsufsort.h"
#ifndef ZDICT_STATIC_LINKING_ONLY
#  define ZDICT_STATIC_LINKING_ONLY
#endif
#include "zdict.h"


/*-*************************************
*  Constants
***************************************/
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)

#define DICTLISTSIZE_DEFAULT 10000

#define NOISELENGTH 32

#define MINRATIO 4
static const int g_compressionLevel_default = 6;
static const U32 g_selectivity_default = 9;
static const size_t g_provision_entropySize = 200;
static const size_t g_min_fast_dictContent = 192;


/*-*************************************
*  Console display
***************************************/
#define DISPLAY(...)         { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); }    /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */

static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }

static void ZDICT_printHex(const void* ptr, size_t length)
{
    const BYTE* const b = (const BYTE*)ptr;
    size_t u;
    for (u=0; u<length; u++) {
        BYTE c = b[u];
        if (c<32 || c>126) c = '.';   /* non-printable char */
        DISPLAY("%c", c);
    }
}


/*-********************************************************
*  Helper functions
**********************************************************/
unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }

const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }

unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
{
    if (dictSize < 8) return 0;
    if (MEM_readLE32(dictBuffer) != ZSTD_DICT_MAGIC) return 0;
    return MEM_readLE32((const char*)dictBuffer + 4);
}


/*-********************************************************
*  Dictionary training functions
**********************************************************/
static unsigned ZDICT_NbCommonBytes (register size_t val)
{
    if (MEM_isLittleEndian()) {
        if (MEM_64bits()) {
#       if defined(_MSC_VER) && defined(_WIN64)
            unsigned long r = 0;
            _BitScanForward64( &r, (U64)val );
            return (unsigned)(r>>3);
#       elif defined(__GNUC__) && (__GNUC__ >= 3)
            return (__builtin_ctzll((U64)val) >> 3);
#       else
            static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
            return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
#       endif
        } else { /* 32 bits */
#       if defined(_MSC_VER)
            unsigned long r=0;
            _BitScanForward( &r, (U32)val );
            return (unsigned)(r>>3);
#       elif defined(__GNUC__) && (__GNUC__ >= 3)
            return (__builtin_ctz((U32)val) >> 3);
#       else
            static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
            return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
#       endif
        }
    } else {  /* Big Endian CPU */
        if (MEM_64bits()) {
#       if defined(_MSC_VER) && defined(_WIN64)
            unsigned long r = 0;
            _BitScanReverse64( &r, val );
            return (unsigned)(r>>3);
#       elif defined(__GNUC__) && (__GNUC__ >= 3)
            return (__builtin_clzll(val) >> 3);
#       else
            unsigned r;
            const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
            if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
            if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
            r += (!val);
            return r;
#       endif
        } else { /* 32 bits */
#       if defined(_MSC_VER)
            unsigned long r = 0;
            _BitScanReverse( &r, (unsigned long)val );
            return (unsigned)(r>>3);
#       elif defined(__GNUC__) && (__GNUC__ >= 3)
            return (__builtin_clz((U32)val) >> 3);
#       else
            unsigned r;
            if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
            r += (!val);
            return r;
#       endif
    }   }
}


/*! ZDICT_count() :
    Count the nb of common bytes between 2 pointers.
    Note : this function presumes end of buffer followed by noisy guard band.
*/
static size_t ZDICT_count(const void* pIn, const void* pMatch)
{
    const char* const pStart = (const char*)pIn;
    for (;;) {
        size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
        if (!diff) {
            pIn = (const char*)pIn+sizeof(size_t);
            pMatch = (const char*)pMatch+sizeof(size_t);
            continue;
        }
        pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
        return (size_t)((const char*)pIn - pStart);
    }
}


typedef struct {
    U32 pos;
    U32 length;
    U32 savings;
} dictItem;

static void ZDICT_initDictItem(dictItem* d)
{
    d->pos = 1;
    d->length = 0;
    d->savings = (U32)(-1);
}


#define LLIMIT 64          /* heuristic determined experimentally */
#define MINMATCHLENGTH 7   /* heuristic determined experimentally */
static dictItem ZDICT_analyzePos(
                       BYTE* doneMarks,
                       const int* suffix, U32 start,
                       const void* buffer, U32 minRatio, U32 notificationLevel)
{
    U32 lengthList[LLIMIT] = {0};
    U32 cumulLength[LLIMIT] = {0};
    U32 savings[LLIMIT] = {0};
    const BYTE* b = (const BYTE*)buffer;
    size_t length;
    size_t maxLength = LLIMIT;
    size_t pos = suffix[start];
    U32 end = start;
    dictItem solution;

    /* init */
    memset(&solution, 0, sizeof(solution));
    doneMarks[pos] = 1;

    /* trivial repetition cases */
    if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
       ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
       ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
        /* skip and mark segment */
        U16 u16 = MEM_read16(b+pos+4);
        U32 u, e = 6;
        while (MEM_read16(b+pos+e) == u16) e+=2 ;
        if (b[pos+e] == b[pos+e-1]) e++;
        for (u=1; u<e; u++)
            doneMarks[pos+u] = 1;
        return solution;
    }

    /* look forward */
    do {
        end++;
        length = ZDICT_count(b + pos, b + suffix[end]);
    } while (length >=MINMATCHLENGTH);

    /* look backward */
    do {
        length = ZDICT_count(b + pos, b + *(suffix+start-1));
        if (length >=MINMATCHLENGTH) start--;
    } while(length >= MINMATCHLENGTH);

    /* exit if not found a minimum nb of repetitions */
    if (end-start < minRatio) {
        U32 idx;
        for(idx=start; idx<end; idx++)
            doneMarks[suffix[idx]] = 1;
        return solution;
    }

    {   int i;
        U32 searchLength;
        U32 refinedStart = start;
        U32 refinedEnd = end;

        DISPLAYLEVEL(4, "\n");
        DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u  ", (U32)(end-start), MINMATCHLENGTH, (U32)pos);
        DISPLAYLEVEL(4, "\n");

        for (searchLength = MINMATCHLENGTH ; ; searchLength++) {
            BYTE currentChar = 0;
            U32 currentCount = 0;
            U32 currentID = refinedStart;
            U32 id;
            U32 selectedCount = 0;
            U32 selectedID = currentID;
            for (id =refinedStart; id < refinedEnd; id++) {
                if (b[ suffix[id] + searchLength] != currentChar) {
                    if (currentCount > selectedCount) {
                        selectedCount = currentCount;
                        selectedID = currentID;
                    }
                    currentID = id;
                    currentChar = b[ suffix[id] + searchLength];
                    currentCount = 0;
                }
                currentCount ++;
            }
            if (currentCount > selectedCount) {  /* for last */
                selectedCount = currentCount;
                selectedID = currentID;
            }

            if (selectedCount < minRatio)
                break;
            refinedStart = selectedID;
            refinedEnd = refinedStart + selectedCount;
        }

        /* evaluate gain based on new ref */
        start = refinedStart;
        pos = suffix[refinedStart];
        end = start;
        memset(lengthList, 0, sizeof(lengthList));

        /* look forward */
        do {
            end++;
            length = ZDICT_count(b + pos, b + suffix[end]);
            if (length >= LLIMIT) length = LLIMIT-1;
            lengthList[length]++;
        } while (length >=MINMATCHLENGTH);

        /* look backward */
        length = MINMATCHLENGTH;
        while ((length >= MINMATCHLENGTH) & (start > 0)) {
        	length = ZDICT_count(b + pos, b + suffix[start - 1]);
        	if (length >= LLIMIT) length = LLIMIT - 1;
        	lengthList[length]++;
        	if (length >= MINMATCHLENGTH) start--;
        }

        /* largest useful length */
        memset(cumulLength, 0, sizeof(cumulLength));
        cumulLength[maxLength-1] = lengthList[maxLength-1];
        for (i=(int)(maxLength-2); i>=0; i--)
            cumulLength[i] = cumulLength[i+1] + lengthList[i];

        for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
        maxLength = i;

        /* reduce maxLength in case of final into repetitive data */
        {   U32 l = (U32)maxLength;
            BYTE const c = b[pos + maxLength-1];
            while (b[pos+l-2]==c) l--;
            maxLength = l;
        }
        if (maxLength < MINMATCHLENGTH) return solution;   /* skip : no long-enough solution */

        /* calculate savings */
        savings[5] = 0;
        for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
            savings[i] = savings[i-1] + (lengthList[i] * (i-3));

        DISPLAYLEVEL(4, "Selected ref at position %u, of length %u : saves %u (ratio: %.2f)  \n",
                     (U32)pos, (U32)maxLength, savings[maxLength], (double)savings[maxLength] / maxLength);

        solution.pos = (U32)pos;
        solution.length = (U32)maxLength;
        solution.savings = savings[maxLength];

        /* mark positions done */
        {   U32 id;
            for (id=start; id<end; id++) {
                U32 p, pEnd;
                U32 const testedPos = suffix[id];
                if (testedPos == pos)
                    length = solution.length;
                else {
                    length = ZDICT_count(b+pos, b+testedPos);
                    if (length > solution.length) length = solution.length;
                }
                pEnd = (U32)(testedPos + length);
                for (p=testedPos; p<pEnd; p++)
                    doneMarks[p] = 1;
    }   }   }

    return solution;
}


/*! ZDICT_checkMerge
    check if dictItem can be merged, do it if possible
    @return : id of destination elt, 0 if not merged
*/
static U32 ZDICT_checkMerge(dictItem* table, dictItem elt, U32 eltNbToSkip)
{
    const U32 tableSize = table->pos;
    const U32 eltEnd = elt.pos + elt.length;

    /* tail overlap */
    U32 u; for (u=1; u<tableSize; u++) {
        if (u==eltNbToSkip) continue;
        if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) {  /* overlap, existing > new */
            /* append */
            U32 addedLength = table[u].pos - elt.pos;
            table[u].length += addedLength;
            table[u].pos = elt.pos;
            table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
            table[u].savings += elt.length / 8;    /* rough approx bonus */
            elt = table[u];
            /* sort : improve rank */
            while ((u>1) && (table[u-1].savings < elt.savings))
            table[u] = table[u-1], u--;
            table[u] = elt;
            return u;
    }   }

    /* front overlap */
    for (u=1; u<tableSize; u++) {
        if (u==eltNbToSkip) continue;
        if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) {  /* overlap, existing < new */
            /* append */
            int addedLength = (int)eltEnd - (table[u].pos + table[u].length);
            table[u].savings += elt.length / 8;    /* rough approx bonus */
            if (addedLength > 0) {   /* otherwise, elt fully included into existing */
                table[u].length += addedLength;
                table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
            }
            /* sort : improve rank */
            elt = table[u];
            while ((u>1) && (table[u-1].savings < elt.savings))
                table[u] = table[u-1], u--;
            table[u] = elt;
            return u;
    }   }

    return 0;
}


static void ZDICT_removeDictItem(dictItem* table, U32 id)
{
    /* convention : first element is nb of elts */
    U32 const max = table->pos;
    U32 u;
    if (!id) return;   /* protection, should never happen */
    for (u=id; u<max-1; u++)
        table[u] = table[u+1];
    table->pos--;
}


static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt)
{
    /* merge if possible */
    U32 mergeId = ZDICT_checkMerge(table, elt, 0);
    if (mergeId) {
        U32 newMerge = 1;
        while (newMerge) {
            newMerge = ZDICT_checkMerge(table, table[mergeId], mergeId);
            if (newMerge) ZDICT_removeDictItem(table, mergeId);
            mergeId = newMerge;
        }
        return;
    }

    /* insert */
    {   U32 current;
        U32 nextElt = table->pos;
        if (nextElt >= maxSize) nextElt = maxSize-1;
        current = nextElt-1;
        while (table[current].savings < elt.savings) {
            table[current+1] = table[current];
            current--;
        }
        table[current+1] = elt;
        table->pos = nextElt+1;
    }
}


static U32 ZDICT_dictSize(const dictItem* dictList)
{
    U32 u, dictSize = 0;
    for (u=1; u<dictList[0].pos; u++)
        dictSize += dictList[u].length;
    return dictSize;
}


static size_t ZDICT_trainBuffer(dictItem* dictList, U32 dictListSize,
                            const void* const buffer, size_t bufferSize,   /* buffer must end with noisy guard band */
                            const size_t* fileSizes, unsigned nbFiles,
                            U32 minRatio, U32 notificationLevel)
{
    int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
    int* const suffix = suffix0+1;
    U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
    BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks));   /* +16 for overflow security */
    U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
    size_t result = 0;
    clock_t displayClock = 0;
    clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;

#   define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
            if (ZDICT_clockSpan(displayClock) > refreshRate)  \
            { displayClock = clock(); DISPLAY(__VA_ARGS__); \
            if (notificationLevel>=4) fflush(stdout); } }

    /* init */
    DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
    if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
        result = ERROR(memory_allocation);
        goto _cleanup;
    }
    if (minRatio < MINRATIO) minRatio = MINRATIO;
    memset(doneMarks, 0, bufferSize+16);

    /* limit sample set size (divsufsort limitation)*/
    if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (U32)(ZDICT_MAX_SAMPLES_SIZE>>20));
    while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];

    /* sort */
    DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (U32)(bufferSize>>20));
    {   int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
        if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
    }
    suffix[bufferSize] = (int)bufferSize;   /* leads into noise */
    suffix0[0] = (int)bufferSize;           /* leads into noise */
    /* build reverse suffix sort */
    {   size_t pos;
        for (pos=0; pos < bufferSize; pos++)
            reverseSuffix[suffix[pos]] = (U32)pos;
        /* note filePos tracks borders between samples.
           It's not used at this stage, but planned to become useful in a later update */
        filePos[0] = 0;
        for (pos=1; pos<nbFiles; pos++)
            filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
    }

    DISPLAYLEVEL(2, "finding patterns ... \n");
    DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);

    {   U32 cursor; for (cursor=0; cursor < bufferSize; ) {
            dictItem solution;
            if (doneMarks[cursor]) { cursor++; continue; }
            solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
            if (solution.length==0) { cursor++; continue; }
            ZDICT_insertDictItem(dictList, dictListSize, solution);
            cursor += solution.length;
            DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
    }   }

_cleanup:
    free(suffix0);
    free(reverseSuffix);
    free(doneMarks);
    free(filePos);
    return result;
}


static void ZDICT_fillNoise(void* buffer, size_t length)
{
    unsigned const prime1 = 2654435761U;
    unsigned const prime2 = 2246822519U;
    unsigned acc = prime1;
    size_t p=0;;
    for (p=0; p<length; p++) {
        acc *= prime2;
        ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
    }
}


typedef struct
{
    ZSTD_CCtx* ref;
    ZSTD_CCtx* zc;
    void* workPlace;   /* must be ZSTD_BLOCKSIZE_ABSOLUTEMAX allocated */
} EStats_ress_t;

#define MAXREPOFFSET 1024

static void ZDICT_countEStats(EStats_ress_t esr, ZSTD_parameters params,
                            U32* countLit, U32* offsetcodeCount, U32* matchlengthCount, U32* litlengthCount, U32* repOffsets,
                            const void* src, size_t srcSize, U32 notificationLevel)
{
    size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_ABSOLUTEMAX, 1 << params.cParams.windowLog);
    size_t cSize;

    if (srcSize > blockSizeMax) srcSize = blockSizeMax;   /* protection vs large samples */
    {  size_t const errorCode = ZSTD_copyCCtx(esr.zc, esr.ref, 0);
            if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_copyCCtx failed \n"); return; }
    }
    cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_ABSOLUTEMAX, src, srcSize);
    if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (U32)srcSize); return; }

    if (cSize) {  /* if == 0; block is not compressible */
        const seqStore_t* seqStorePtr = ZSTD_getSeqStore(esr.zc);

        /* literals stats */
        {   const BYTE* bytePtr;
            for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
                countLit[*bytePtr]++;
        }

        /* seqStats */
        {   U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
            ZSTD_seqToCodes(seqStorePtr);

            {   const BYTE* codePtr = seqStorePtr->ofCode;
                U32 u;
                for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
            }

            {   const BYTE* codePtr = seqStorePtr->mlCode;
                U32 u;
                for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
            }

            {   const BYTE* codePtr = seqStorePtr->llCode;
                U32 u;
                for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
            }

            if (nbSeq >= 2) { /* rep offsets */
                const seqDef* const seq = seqStorePtr->sequencesStart;
                U32 offset1 = seq[0].offset - 3;
                U32 offset2 = seq[1].offset - 3;
                if (offset1 >= MAXREPOFFSET) offset1 = 0;
                if (offset2 >= MAXREPOFFSET) offset2 = 0;
                repOffsets[offset1] += 3;
                repOffsets[offset2] += 1;
    }   }   }
}

/*
static size_t ZDICT_maxSampleSize(const size_t* fileSizes, unsigned nbFiles)
{
    unsigned u;
    size_t max=0;
    for (u=0; u<nbFiles; u++)
        if (max < fileSizes[u]) max = fileSizes[u];
    return max;
}
*/

static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
{
    size_t total=0;
    unsigned u;
    for (u=0; u<nbFiles; u++) total += fileSizes[u];
    return total;
}

typedef struct { U32 offset; U32 count; } offsetCount_t;

static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
{
    U32 u;
    table[ZSTD_REP_NUM].offset = val;
    table[ZSTD_REP_NUM].count = count;
    for (u=ZSTD_REP_NUM; u>0; u--) {
        offsetCount_t tmp;
        if (table[u-1].count >= table[u].count) break;
        tmp = table[u-1];
        table[u-1] = table[u];
        table[u] = tmp;
    }
}


#define OFFCODE_MAX 30  /* only applicable to first block */
static size_t ZDICT_analyzeEntropy(void*  dstBuffer, size_t maxDstSize,
                                   unsigned compressionLevel,
                             const void*  srcBuffer, const size_t* fileSizes, unsigned nbFiles,
                             const void* dictBuffer, size_t  dictBufferSize,
                                   unsigned notificationLevel)
{
    U32 countLit[256];
    HUF_CREATE_STATIC_CTABLE(hufTable, 255);
    U32 offcodeCount[OFFCODE_MAX+1];
    short offcodeNCount[OFFCODE_MAX+1];
    U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
    U32 matchLengthCount[MaxML+1];
    short matchLengthNCount[MaxML+1];
    U32 litLengthCount[MaxLL+1];
    short litLengthNCount[MaxLL+1];
    U32 repOffset[MAXREPOFFSET];
    offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
    EStats_ress_t esr;
    ZSTD_parameters params;
    U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
    size_t pos = 0, errorCode;
    size_t eSize = 0;
    size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
    size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
    BYTE* dstPtr = (BYTE*)dstBuffer;

    /* init */
    esr.ref = ZSTD_createCCtx();
    esr.zc = ZSTD_createCCtx();
    esr.workPlace = malloc(ZSTD_BLOCKSIZE_ABSOLUTEMAX);
    if (!esr.ref || !esr.zc || !esr.workPlace) {
        eSize = ERROR(memory_allocation);
        DISPLAYLEVEL(1, "Not enough memory \n");
        goto _cleanup;
    }
    if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionary_wrong); goto _cleanup; }   /* too large dictionary */
    for (u=0; u<256; u++) countLit[u]=1;   /* any character must be described */
    for (u=0; u<=offcodeMax; u++) offcodeCount[u]=1;
    for (u=0; u<=MaxML; u++) matchLengthCount[u]=1;
    for (u=0; u<=MaxLL; u++) litLengthCount[u]=1;
    memset(repOffset, 0, sizeof(repOffset));
    repOffset[1] = repOffset[4] = repOffset[8] = 1;
    memset(bestRepOffset, 0, sizeof(bestRepOffset));
    if (compressionLevel==0) compressionLevel=g_compressionLevel_default;
    params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
    {   size_t const beginResult = ZSTD_compressBegin_advanced(esr.ref, dictBuffer, dictBufferSize, params, 0);
            if (ZSTD_isError(beginResult)) {
            eSize = ERROR(GENERIC);
            DISPLAYLEVEL(1, "error : ZSTD_compressBegin_advanced failed \n");
            goto _cleanup;
    }   }

    /* collect stats on all files */
    for (u=0; u<nbFiles; u++) {
        ZDICT_countEStats(esr, params,
                          countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
                         (const char*)srcBuffer + pos, fileSizes[u],
                          notificationLevel);
        pos += fileSizes[u];
    }

    /* analyze */
    errorCode = HUF_buildCTable (hufTable, countLit, 255, huffLog);
    if (HUF_isError(errorCode)) {
        eSize = ERROR(GENERIC);
        DISPLAYLEVEL(1, "HUF_buildCTable error \n");
        goto _cleanup;
    }
    huffLog = (U32)errorCode;

    /* looking for most common first offsets */
    {   U32 offset;
        for (offset=1; offset<MAXREPOFFSET; offset++)
            ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
    }
    /* note : the result of this phase should be used to better appreciate the impact on statistics */

    total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
    errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax);
    if (FSE_isError(errorCode)) {
        eSize = ERROR(GENERIC);
        DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
        goto _cleanup;
    }
    Offlog = (U32)errorCode;

    total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
    errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML);
    if (FSE_isError(errorCode)) {
        eSize = ERROR(GENERIC);
        DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
        goto _cleanup;
    }
    mlLog = (U32)errorCode;

    total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
    errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL);
    if (FSE_isError(errorCode)) {
        eSize = ERROR(GENERIC);
        DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
        goto _cleanup;
    }
    llLog = (U32)errorCode;

    /* write result to buffer */
    {   size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
        if (HUF_isError(hhSize)) {
            eSize = ERROR(GENERIC);
            DISPLAYLEVEL(1, "HUF_writeCTable error \n");
            goto _cleanup;
        }
        dstPtr += hhSize;
        maxDstSize -= hhSize;
        eSize += hhSize;
    }

    {   size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
        if (FSE_isError(ohSize)) {
            eSize = ERROR(GENERIC);
            DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
            goto _cleanup;
        }
        dstPtr += ohSize;
        maxDstSize -= ohSize;
        eSize += ohSize;
    }

    {   size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
        if (FSE_isError(mhSize)) {
            eSize = ERROR(GENERIC);
            DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
            goto _cleanup;
        }
        dstPtr += mhSize;
        maxDstSize -= mhSize;
        eSize += mhSize;
    }

    {   size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
        if (FSE_isError(lhSize)) {
            eSize = ERROR(GENERIC);
            DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
            goto _cleanup;
        }
        dstPtr += lhSize;
        maxDstSize -= lhSize;
        eSize += lhSize;
    }

    if (maxDstSize<12) {
        eSize = ERROR(GENERIC);
        DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
        goto _cleanup;
    }
# if 0
    MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
    MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
    MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
#else
    /* at this stage, we don't use the result of "most common first offset",
       as the impact of statistics is not properly evaluated */
    MEM_writeLE32(dstPtr+0, repStartValue[0]);
    MEM_writeLE32(dstPtr+4, repStartValue[1]);
    MEM_writeLE32(dstPtr+8, repStartValue[2]);
#endif
    //dstPtr += 12;
    eSize += 12;

_cleanup:
    ZSTD_freeCCtx(esr.ref);
    ZSTD_freeCCtx(esr.zc);
    free(esr.workPlace);

    return eSize;
}



size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
                          const void* customDictContent, size_t dictContentSize,
                          const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
                          ZDICT_params_t params)
{
    size_t hSize;
#define HBUFFSIZE 256
    BYTE header[HBUFFSIZE];
    int const compressionLevel = (params.compressionLevel <= 0) ? g_compressionLevel_default : params.compressionLevel;
    U32 const notificationLevel = params.notificationLevel;

    /* check conditions */
    if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
    if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong);
    if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);

    /* dictionary header */
    MEM_writeLE32(header, ZSTD_DICT_MAGIC);
    {   U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
        U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
        U32 const dictID = params.dictID ? params.dictID : compliantID;
        MEM_writeLE32(header+4, dictID);
    }
    hSize = 8;

    /* entropy tables */
    DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
    DISPLAYLEVEL(2, "statistics ... \n");
    {   size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
                                  compressionLevel,
                                  samplesBuffer, samplesSizes, nbSamples,
                                  customDictContent, dictContentSize,
                                  notificationLevel);
        if (ZDICT_isError(eSize)) return eSize;
        hSize += eSize;
    }

    /* copy elements in final buffer ; note : src and dst buffer can overlap */
    if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize;
    {   size_t const dictSize = hSize + dictContentSize;
        char* dictEnd = (char*)dictBuffer + dictSize;
        memmove(dictEnd - dictContentSize, customDictContent, dictContentSize);
        memcpy(dictBuffer, header, hSize);
        return dictSize;
    }
}


size_t ZDICT_addEntropyTablesFromBuffer_advanced(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
                                                 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
                                                 ZDICT_params_t params)
{
    size_t hSize;
    int const compressionLevel = (params.compressionLevel <= 0) ? g_compressionLevel_default : params.compressionLevel;
    U32 const notificationLevel = params.notificationLevel;

    /* dictionary header */
    MEM_writeLE32(dictBuffer, ZSTD_DICT_MAGIC);
    {   U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
        U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
        U32 const dictID = params.dictID ? params.dictID : compliantID;
        MEM_writeLE32((char*)dictBuffer+4, dictID);
    }
    hSize = 8;

    /* entropy tables */
    DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
    DISPLAYLEVEL(2, "statistics ... \n");
    {   size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
                                  compressionLevel,
                                  samplesBuffer, samplesSizes, nbSamples,
                                  (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
                                  notificationLevel);
        if (ZDICT_isError(eSize)) return eSize;
        hSize += eSize;
    }


    if (hSize + dictContentSize < dictBufferCapacity)
        memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
    return MIN(dictBufferCapacity, hSize+dictContentSize);
}


/*! ZDICT_trainFromBuffer_unsafe() :
*   Warning : `samplesBuffer` must be followed by noisy guard band.
*   @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
*/
size_t ZDICT_trainFromBuffer_unsafe(
                            void* dictBuffer, size_t maxDictSize,
                            const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
                            ZDICT_params_t params)
{
    U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
    dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
    unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
    unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
    size_t const targetDictSize = maxDictSize;
    size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
    size_t dictSize = 0;
    U32 const notificationLevel = params.notificationLevel;

    /* checks */
    if (!dictList) return ERROR(memory_allocation);
    if (maxDictSize <= g_provision_entropySize + g_min_fast_dictContent) { free(dictList); return ERROR(dstSize_tooSmall); }
    if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return 0; }   /* not enough source to create dictionary */

    /* init */
    ZDICT_initDictItem(dictList);

    /* build dictionary */
    ZDICT_trainBuffer(dictList, dictListSize,
                    samplesBuffer, samplesBuffSize,
                    samplesSizes, nbSamples,
                    minRep, notificationLevel);

    /* display best matches */
    if (params.notificationLevel>= 3) {
        U32 const nb = MIN(25, dictList[0].pos);
        U32 const dictContentSize = ZDICT_dictSize(dictList);
        U32 u;
        DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", dictList[0].pos-1, dictContentSize);
        DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
        for (u=1; u<nb; u++) {
            U32 const pos = dictList[u].pos;
            U32 const length = dictList[u].length;
            U32 const printedLength = MIN(40, length);
            if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize))
                return ERROR(GENERIC);   /* should never happen */
            DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
                         u, length, pos, dictList[u].savings);
            ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
            DISPLAYLEVEL(3, "| \n");
    }   }


    /* create dictionary */
    {   U32 dictContentSize = ZDICT_dictSize(dictList);
        if (dictContentSize < targetDictSize/3) {
            DISPLAYLEVEL(2, "!  warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (U32)maxDictSize);
            if (minRep > MINRATIO) {
                DISPLAYLEVEL(2, "!  consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
                DISPLAYLEVEL(2, "!  note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
            }
            if (samplesBuffSize < 10 * targetDictSize)
                DISPLAYLEVEL(2, "!  consider increasing the number of samples (total size : %u MB)\n", (U32)(samplesBuffSize>>20));
        }

        if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
            U32 proposedSelectivity = selectivity-1;
            while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
            DISPLAYLEVEL(2, "!  note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (U32)maxDictSize);
            DISPLAYLEVEL(2, "!  consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
            DISPLAYLEVEL(2, "!  always test dictionary efficiency on samples \n");
        }

        /* limit dictionary size */
        {   U32 const max = dictList->pos;   /* convention : nb of useful elts within dictList */
            U32 currentSize = 0;
            U32 n; for (n=1; n<max; n++) {
                currentSize += dictList[n].length;
                if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
            }
            dictList->pos = n;
            dictContentSize = currentSize;
        }

        /* build dict content */
        {   U32 u;
            BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
            for (u=1; u<dictList->pos; u++) {
                U32 l = dictList[u].length;
                ptr -= l;
                if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); }   /* should not happen */
                memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
        }   }

        dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
                                                             samplesBuffer, samplesSizes, nbSamples,
                                                             params);
    }

    /* clean up */
    free(dictList);
    return dictSize;
}


/* issue : samplesBuffer need to be followed by a noisy guard band.
*  work around : duplicate the buffer, and add the noise */
size_t ZDICT_trainFromBuffer_advanced(void* dictBuffer, size_t dictBufferCapacity,
                                      const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
                                      ZDICT_params_t params)
{
    size_t result;
    void* newBuff;
    size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
    if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0;   /* not enough content => no dictionary */

    newBuff = malloc(sBuffSize + NOISELENGTH);
    if (!newBuff) return ERROR(memory_allocation);

    memcpy(newBuff, samplesBuffer, sBuffSize);
    ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH);   /* guard band, for end of buffer condition */

    result = ZDICT_trainFromBuffer_unsafe(
                                        dictBuffer, dictBufferCapacity,
                                        newBuff, samplesSizes, nbSamples,
                                        params);
    free(newBuff);
    return result;
}


size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
{
    ZDICT_params_t params;
    memset(&params, 0, sizeof(params));
    return ZDICT_trainFromBuffer_advanced(dictBuffer, dictBufferCapacity,
                                          samplesBuffer, samplesSizes, nbSamples,
                                          params);
}

size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
                                        const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
{
    ZDICT_params_t params;
    memset(&params, 0, sizeof(params));
    return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
                                                     samplesBuffer, samplesSizes, nbSamples,
                                                     params);
}