view mercurial/ancestor.py @ 15711:c51c9dc13a58

cygwin: add cygwin specific normcase logic in cygwin environment, mount point part of path is treated as case sensitive, even though underlying NTFS is case insensitive. this patch preserves mount point part of specified path, only if it is absolute one. there is no easy way to get list of current mount points from python program, other than to execute "mount" external command, because cygwin does not store current mount points into Unix/Linux like /etc/XXXtab file. so, this patch introduces cygwinmountpoints variable to list mount points to be preserved case. this allows some other extensions to customize mount point configuration.
author FUJIWARA Katsunori <foozy@lares.dti.ne.jp>
date Fri, 16 Dec 2011 21:21:08 +0900
parents 1ffeeb91c55d
children 0b03454abae7
line wrap: on
line source

# ancestor.py - generic DAG ancestor algorithm for mercurial
#
# Copyright 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

import heapq

def ancestor(a, b, pfunc):
    """
    Returns the common ancestor of a and b that is furthest from a
    root (as measured by longest path) or None if no ancestor is
    found. If there are multiple common ancestors at the same
    distance, the first one found is returned.

    pfunc must return a list of parent vertices for a given vertex
    """

    if a == b:
        return a

    a, b = sorted([a, b])

    # find depth from root of all ancestors
    # depth is stored as a negative for heapq
    parentcache = {}
    visit = [a, b]
    depth = {}
    while visit:
        vertex = visit[-1]
        pl = pfunc(vertex)
        parentcache[vertex] = pl
        if not pl:
            depth[vertex] = 0
            visit.pop()
        else:
            for p in pl:
                if p == a or p == b: # did we find a or b as a parent?
                    return p # we're done
                if p not in depth:
                    visit.append(p)
            if visit[-1] == vertex:
                # -(maximum distance of parents + 1)
                depth[vertex] = min([depth[p] for p in pl]) - 1
                visit.pop()

    # traverse ancestors in order of decreasing distance from root
    def ancestors(vertex):
        h = [(depth[vertex], vertex)]
        seen = set()
        while h:
            d, n = heapq.heappop(h)
            if n not in seen:
                seen.add(n)
                yield (d, n)
                for p in parentcache[n]:
                    heapq.heappush(h, (depth[p], p))

    def generations(vertex):
        sg, s = None, set()
        for g, v in ancestors(vertex):
            if g != sg:
                if sg:
                    yield sg, s
                sg, s = g, set((v,))
            else:
                s.add(v)
        yield sg, s

    x = generations(a)
    y = generations(b)
    gx = x.next()
    gy = y.next()

    # increment each ancestor list until it is closer to root than
    # the other, or they match
    try:
        while True:
            if gx[0] == gy[0]:
                for v in gx[1]:
                    if v in gy[1]:
                        return v
                gy = y.next()
                gx = x.next()
            elif gx[0] > gy[0]:
                gy = y.next()
            else:
                gx = x.next()
    except StopIteration:
        return None