Mercurial > hg
view tests/test-ancestor.py @ 42415:c767e655ffda
narrow: use narrow_widen wireproto command to widen in case of ellipses
Few releases ago, we introduce narrow_widen wireproto command to be used to widen
narrow repositories. Before this patch, that was used in non-ellipses cases
only. In ellipses cases, we still do exchange.pull() which can pull more data
than required.
After this patch, the client will first check whether server supports doing
ellipses widening using wireproto command or not by checking server's wireproto
capability. If the server is upto date and support latest ellipses capability,
we call the wireproto command. Otherwise we fallback to exchange.pull() like
before.
The compat code make sure that things works even if one of the client or server
is old. The initial version of this patch does not had this compat code. It's
added to help Google release things smoothly internally. I plan to drop the
compat code before the upcoming major release.
Due to change to wireproto command, the code looks a bit dirty, next patches
will clean that up.
Differential Revision: https://phab.mercurial-scm.org/D6436
author | Pulkit Goyal <7895pulkit@gmail.com> |
---|---|
date | Wed, 22 May 2019 02:59:48 +0530 |
parents | 876494fd967d |
children | 2372284d9457 |
line wrap: on
line source
from __future__ import absolute_import, print_function import binascii import getopt import math import os import random import sys import time from mercurial.node import nullrev from mercurial import ( ancestor, debugcommands, hg, pycompat, ui as uimod, util, ) if pycompat.ispy3: long = int xrange = range def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7): '''nodes: total number of nodes in the graph rootprob: probability that a new node (not 0) will be a root mergeprob: probability that, excluding a root a node will be a merge prevprob: probability that p1 will be the previous node return value is a graph represented as an adjacency list. ''' graph = [None] * nodes for i in xrange(nodes): if i == 0 or rng.random() < rootprob: graph[i] = [nullrev] elif i == 1: graph[i] = [0] elif rng.random() < mergeprob: if i == 2 or rng.random() < prevprob: # p1 is prev p1 = i - 1 else: p1 = rng.randrange(i - 1) p2 = rng.choice(list(range(0, p1)) + list(range(p1 + 1, i))) graph[i] = [p1, p2] elif rng.random() < prevprob: graph[i] = [i - 1] else: graph[i] = [rng.randrange(i - 1)] return graph def buildancestorsets(graph): ancs = [None] * len(graph) for i in xrange(len(graph)): ancs[i] = {i} if graph[i] == [nullrev]: continue for p in graph[i]: ancs[i].update(ancs[p]) return ancs class naiveincrementalmissingancestors(object): def __init__(self, ancs, bases): self.ancs = ancs self.bases = set(bases) def addbases(self, newbases): self.bases.update(newbases) def removeancestorsfrom(self, revs): for base in self.bases: if base != nullrev: revs.difference_update(self.ancs[base]) revs.discard(nullrev) def missingancestors(self, revs): res = set() for rev in revs: if rev != nullrev: res.update(self.ancs[rev]) for base in self.bases: if base != nullrev: res.difference_update(self.ancs[base]) return sorted(res) def test_missingancestors(seed, rng): # empirically observed to take around 1 second graphcount = 100 testcount = 10 inccount = 10 nerrs = [0] # the default mu and sigma give us a nice distribution of mostly # single-digit counts (including 0) with some higher ones def lognormrandom(mu, sigma): return int(math.floor(rng.lognormvariate(mu, sigma))) def samplerevs(nodes, mu=1.1, sigma=0.8): count = min(lognormrandom(mu, sigma), len(nodes)) return rng.sample(nodes, count) def err(seed, graph, bases, seq, output, expected): if nerrs[0] == 0: print('seed:', hex(seed)[:-1], file=sys.stderr) if gerrs[0] == 0: print('graph:', graph, file=sys.stderr) print('* bases:', bases, file=sys.stderr) print('* seq: ', seq, file=sys.stderr) print('* output: ', output, file=sys.stderr) print('* expected:', expected, file=sys.stderr) nerrs[0] += 1 gerrs[0] += 1 for g in xrange(graphcount): graph = buildgraph(rng) ancs = buildancestorsets(graph) gerrs = [0] for _ in xrange(testcount): # start from nullrev to include it as a possibility graphnodes = range(nullrev, len(graph)) bases = samplerevs(graphnodes) # fast algorithm inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases) # reference slow algorithm naiveinc = naiveincrementalmissingancestors(ancs, bases) seq = [] for _ in xrange(inccount): if rng.random() < 0.2: newbases = samplerevs(graphnodes) seq.append(('addbases', newbases)) inc.addbases(newbases) naiveinc.addbases(newbases) if rng.random() < 0.4: # larger set so that there are more revs to remove from revs = samplerevs(graphnodes, mu=1.5) seq.append(('removeancestorsfrom', revs)) hrevs = set(revs) rrevs = set(revs) inc.removeancestorsfrom(hrevs) naiveinc.removeancestorsfrom(rrevs) if hrevs != rrevs: err(seed, graph, bases, seq, sorted(hrevs), sorted(rrevs)) else: revs = samplerevs(graphnodes) seq.append(('missingancestors', revs)) h = inc.missingancestors(revs) r = naiveinc.missingancestors(revs) if h != r: err(seed, graph, bases, seq, h, r) # graph is a dict of child->parent adjacency lists for this graph: # o 13 # | # | o 12 # | | # | | o 11 # | | |\ # | | | | o 10 # | | | | | # | o---+ | 9 # | | | | | # o | | | | 8 # / / / / # | | o | 7 # | | | | # o---+ | 6 # / / / # | | o 5 # | |/ # | o 4 # | | # o | 3 # | | # | o 2 # |/ # o 1 # | # o 0 graph = {0: [-1, -1], 1: [0, -1], 2: [1, -1], 3: [1, -1], 4: [2, -1], 5: [4, -1], 6: [4, -1], 7: [4, -1], 8: [-1, -1], 9: [6, 7], 10: [5, -1], 11: [3, 7], 12: [9, -1], 13: [8, -1]} def test_missingancestors_explicit(): """A few explicit cases, easier to check for catching errors in refactors. The bigger graph at the end has been produced by the random generator above, and we have some evidence that the other tests don't cover it. """ for i, (bases, revs) in enumerate((({1, 2, 3, 4, 7}, set(xrange(10))), ({10}, set({11, 12, 13, 14})), ({7}, set({1, 2, 3, 4, 5})), )): print("%% removeancestorsfrom(), example %d" % (i + 1)) missanc = ancestor.incrementalmissingancestors(graph.get, bases) missanc.removeancestorsfrom(revs) print("remaining (sorted): %s" % sorted(list(revs))) for i, (bases, revs) in enumerate((({10}, {11}), ({11}, {10}), ({7}, {9, 11}), )): print("%% missingancestors(), example %d" % (i + 1)) missanc = ancestor.incrementalmissingancestors(graph.get, bases) print("return %s" % missanc.missingancestors(revs)) print("% removeancestorsfrom(), bigger graph") vecgraph = [ [-1, -1], [0, -1], [1, 0], [2, 1], [3, -1], [4, -1], [5, 1], [2, -1], [7, -1], [8, -1], [9, -1], [10, 1], [3, -1], [12, -1], [13, -1], [14, -1], [4, -1], [16, -1], [17, -1], [18, -1], [19, 11], [20, -1], [21, -1], [22, -1], [23, -1], [2, -1], [3, -1], [26, 24], [27, -1], [28, -1], [12, -1], [1, -1], [1, 9], [32, -1], [33, -1], [34, 31], [35, -1], [36, 26], [37, -1], [38, -1], [39, -1], [40, -1], [41, -1], [42, 26], [0, -1], [44, -1], [45, 4], [40, -1], [47, -1], [36, 0], [49, -1], [-1, -1], [51, -1], [52, -1], [53, -1], [14, -1], [55, -1], [15, -1], [23, -1], [58, -1], [59, -1], [2, -1], [61, 59], [62, -1], [63, -1], [-1, -1], [65, -1], [66, -1], [67, -1], [68, -1], [37, 28], [69, 25], [71, -1], [72, -1], [50, 2], [74, -1], [12, -1], [18, -1], [77, -1], [78, -1], [79, -1], [43, 33], [81, -1], [82, -1], [83, -1], [84, 45], [85, -1], [86, -1], [-1, -1], [88, -1], [-1, -1], [76, 83], [44, -1], [92, -1], [93, -1], [9, -1], [95, 67], [96, -1], [97, -1], [-1, -1]] problem_rev = 28 problem_base = 70 # problem_rev is a parent of problem_base, but a faulty implementation # could forget to remove it. bases = {60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6} if problem_rev not in vecgraph[problem_base] or problem_base not in bases: print("Conditions have changed") missanc = ancestor.incrementalmissingancestors(vecgraph.__getitem__, bases) revs = {4, 12, 41, 28, 68, 38, 1, 30, 56, 44} missanc.removeancestorsfrom(revs) if 28 in revs: print("Failed!") else: print("Ok") def genlazyancestors(revs, stoprev=0, inclusive=False): print(("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" % (revs, stoprev, inclusive))) return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev, inclusive=inclusive) def printlazyancestors(s, l): print('membership: %r' % [n for n in l if n in s]) print('iteration: %r' % list(s)) def test_lazyancestors(): # Empty revs s = genlazyancestors([]) printlazyancestors(s, [3, 0, -1]) # Standard example s = genlazyancestors([11, 13]) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Standard with ancestry in the initial set (1 is ancestor of 3) s = genlazyancestors([1, 3]) printlazyancestors(s, [1, -1, 0]) # Including revs s = genlazyancestors([11, 13], inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Test with stoprev s = genlazyancestors([11, 13], stoprev=6) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) s = genlazyancestors([11, 13], stoprev=6, inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Test with stoprev >= min(initrevs) s = genlazyancestors([11, 13], stoprev=11, inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) s = genlazyancestors([11, 13], stoprev=12, inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Contiguous chains: 5->4, 2->1 (where 1 is in seen set), 1->0 s = genlazyancestors([10, 1], inclusive=True) printlazyancestors(s, [2, 10, 4, 5, -1, 0, 1]) # The C gca algorithm requires a real repo. These are textual descriptions of # DAGs that have been known to be problematic, and, optionally, known pairs # of revisions and their expected ancestor list. dagtests = [ (b'+2*2*2/*3/2', {}), (b'+3*3/*2*2/*4*4/*4/2*4/2*2', {}), (b'+2*2*/2*4*/4*/3*2/4', {(6, 7): [3, 5]}), ] def test_gca(): u = uimod.ui.load() for i, (dag, tests) in enumerate(dagtests): repo = hg.repository(u, b'gca%d' % i, create=1) cl = repo.changelog if not util.safehasattr(cl.index, 'ancestors'): # C version not available return debugcommands.debugbuilddag(u, repo, dag) # Compare the results of the Python and C versions. This does not # include choosing a winner when more than one gca exists -- we make # sure both return exactly the same set of gcas. # Also compare against expected results, if available. for a in cl: for b in cl: cgcas = sorted(cl.index.ancestors(a, b)) pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b)) expected = None if (a, b) in tests: expected = tests[(a, b)] if cgcas != pygcas or (expected and cgcas != expected): print("test_gca: for dag %s, gcas for %d, %d:" % (dag, a, b)) print(" C returned: %s" % cgcas) print(" Python returned: %s" % pygcas) if expected: print(" expected: %s" % expected) def main(): seed = None opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed=']) for o, a in opts: if o in ('-s', '--seed'): seed = long(a, base=0) # accepts base 10 or 16 strings if seed is None: try: seed = long(binascii.hexlify(os.urandom(16)), 16) except AttributeError: seed = long(time.time() * 1000) rng = random.Random(seed) test_missingancestors_explicit() test_missingancestors(seed, rng) test_lazyancestors() test_gca() if __name__ == '__main__': main()