Mercurial > hg
view mercurial/ancestor.py @ 14451:c78d41db6f88
patch: refactor file creation/removal detection
The patcher has to know if a file is being created or removed to check if the
target already exists, or to actually unlink the file when a hunk emptying it
is applied. This was done by embedding the creation/removal information in the
first (and only) hunk attached to the file.
There are two problems with this approach:
- creation/removal is really a property of the file being patched and not its
hunk.
- for regular patches, file creation cannot be deduced at parsing time: there
are case where the *stripped* file paths must be compared. Modifying hunks
after their creation is clumsy and prevent further refactorings related to
copies handling.
Instead, we delegate this job to selectfile() which has all the relevant
information, and remove the hunk createfile() and rmfile() methods.
author | Patrick Mezard <pmezard@gmail.com> |
---|---|
date | Fri, 27 May 2011 21:50:09 +0200 |
parents | 22565ddb28e7 |
children | 1ffeeb91c55d |
line wrap: on
line source
# ancestor.py - generic DAG ancestor algorithm for mercurial # # Copyright 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import heapq def ancestor(a, b, pfunc): """ Returns the common ancestor of a and b that is furthest from a root (as measured by longest path) or None if no ancestor is found. If there are multiple common ancestors at the same distance, the first one found is returned. pfunc must return a list of parent vertices for a given vertex """ if a == b: return a a, b = sorted([a, b]) # find depth from root of all ancestors # depth is stored as a negative for heapq parentcache = {} visit = [a, b] depth = {} while visit: vertex = visit[-1] pl = pfunc(vertex) parentcache[vertex] = pl if not pl: depth[vertex] = 0 visit.pop() else: for p in pl: if p == a or p == b: # did we find a or b as a parent? return p # we're done if p not in depth: visit.append(p) if visit[-1] == vertex: # -(maximum distance of parents + 1) depth[vertex] = min([depth[p] for p in pl]) - 1 visit.pop() # traverse ancestors in order of decreasing distance from root def ancestors(vertex): h = [(depth[vertex], vertex)] seen = set() while h: d, n = heapq.heappop(h) if n not in seen: seen.add(n) yield (d, n) for p in parentcache[n]: heapq.heappush(h, (depth[p], p)) def generations(vertex): sg, s = None, set() for g, v in ancestors(vertex): if g != sg: if sg: yield sg, s sg, s = g, set((v,)) else: s.add(v) yield sg, s x = generations(a) y = generations(b) gx = x.next() gy = y.next() # increment each ancestor list until it is closer to root than # the other, or they match try: while 1: if gx[0] == gy[0]: for v in gx[1]: if v in gy[1]: return v gy = y.next() gx = x.next() elif gx[0] > gy[0]: gy = y.next() else: gx = x.next() except StopIteration: return None