Mercurial > hg
view mercurial/cext/revlog.c @ 45991:c7f40562389f
heptapod-ci: automatically refresh existing phabricator Diff on push
If a changeset have been submitted to Phabricator and a new version is pushed to
heptapod, we should refresh the state on Phabricator. If we do not do this, they
are a risk of an older version being applied from Phabricator. In this situation
content-divergence will be (rightfully) detected by evolution.
We only refresh the Diff if the test pass, to avoid updating Phabricator with
broken content.
Differential Revision: https://phab.mercurial-scm.org/D9451
author | Pierre-Yves David <pierre-yves.david@octobus.net> |
---|---|
date | Sat, 28 Nov 2020 14:15:55 +0100 |
parents | 0ce15a8c7b8b |
children | c581b9ee22b1 |
line wrap: on
line source
/* parsers.c - efficient content parsing Copyright 2008 Matt Mackall <mpm@selenic.com> and others This software may be used and distributed according to the terms of the GNU General Public License, incorporated herein by reference. */ #define PY_SSIZE_T_CLEAN #include <Python.h> #include <assert.h> #include <ctype.h> #include <limits.h> #include <stddef.h> #include <stdlib.h> #include <string.h> #include "bitmanipulation.h" #include "charencode.h" #include "revlog.h" #include "util.h" #ifdef IS_PY3K /* The mapping of Python types is meant to be temporary to get Python * 3 to compile. We should remove this once Python 3 support is fully * supported and proper types are used in the extensions themselves. */ #define PyInt_Check PyLong_Check #define PyInt_FromLong PyLong_FromLong #define PyInt_FromSsize_t PyLong_FromSsize_t #define PyInt_AsLong PyLong_AsLong #endif typedef struct indexObjectStruct indexObject; typedef struct { int children[16]; } nodetreenode; typedef struct { int abi_version; Py_ssize_t (*index_length)(const indexObject *); const char *(*index_node)(indexObject *, Py_ssize_t); int (*index_parents)(PyObject *, int, int *); } Revlog_CAPI; /* * A base-16 trie for fast node->rev mapping. * * Positive value is index of the next node in the trie * Negative value is a leaf: -(rev + 2) * Zero is empty */ typedef struct { indexObject *index; nodetreenode *nodes; unsigned length; /* # nodes in use */ unsigned capacity; /* # nodes allocated */ int depth; /* maximum depth of tree */ int splits; /* # splits performed */ } nodetree; typedef struct { PyObject_HEAD /* ; */ nodetree nt; } nodetreeObject; /* * This class has two behaviors. * * When used in a list-like way (with integer keys), we decode an * entry in a RevlogNG index file on demand. We have limited support for * integer-keyed insert and delete, only at elements right before the * end. * * With string keys, we lazily perform a reverse mapping from node to * rev, using a base-16 trie. */ struct indexObjectStruct { PyObject_HEAD /* Type-specific fields go here. */ PyObject *data; /* raw bytes of index */ Py_buffer buf; /* buffer of data */ const char **offsets; /* populated on demand */ Py_ssize_t length; /* current on-disk number of elements */ unsigned new_length; /* number of added elements */ unsigned added_length; /* space reserved for added elements */ char *added; /* populated on demand */ PyObject *headrevs; /* cache, invalidated on changes */ PyObject *filteredrevs; /* filtered revs set */ nodetree nt; /* base-16 trie */ int ntinitialized; /* 0 or 1 */ int ntrev; /* last rev scanned */ int ntlookups; /* # lookups */ int ntmisses; /* # lookups that miss the cache */ int inlined; }; static Py_ssize_t index_length(const indexObject *self) { return self->length + self->new_length; } static PyObject *nullentry = NULL; static const char nullid[20] = {0}; static const Py_ssize_t nullrev = -1; static Py_ssize_t inline_scan(indexObject *self, const char **offsets); static int index_find_node(indexObject *self, const char *node, Py_ssize_t nodelen); #if LONG_MAX == 0x7fffffffL static const char *const tuple_format = PY23("Kiiiiiis#", "Kiiiiiiy#"); #else static const char *const tuple_format = PY23("kiiiiiis#", "kiiiiiiy#"); #endif /* A RevlogNG v1 index entry is 64 bytes long. */ static const long v1_hdrsize = 64; static void raise_revlog_error(void) { PyObject *mod = NULL, *dict = NULL, *errclass = NULL; mod = PyImport_ImportModule("mercurial.error"); if (mod == NULL) { goto cleanup; } dict = PyModule_GetDict(mod); if (dict == NULL) { goto cleanup; } Py_INCREF(dict); errclass = PyDict_GetItemString(dict, "RevlogError"); if (errclass == NULL) { PyErr_SetString(PyExc_SystemError, "could not find RevlogError"); goto cleanup; } /* value of exception is ignored by callers */ PyErr_SetString(errclass, "RevlogError"); cleanup: Py_XDECREF(dict); Py_XDECREF(mod); } /* * Return a pointer to the beginning of a RevlogNG record. */ static const char *index_deref(indexObject *self, Py_ssize_t pos) { if (pos >= self->length) return self->added + (pos - self->length) * v1_hdrsize; if (self->inlined && pos > 0) { if (self->offsets == NULL) { Py_ssize_t ret; self->offsets = PyMem_Malloc(self->length * sizeof(*self->offsets)); if (self->offsets == NULL) return (const char *)PyErr_NoMemory(); ret = inline_scan(self, self->offsets); if (ret == -1) { return NULL; }; } return self->offsets[pos]; } return (const char *)(self->buf.buf) + pos * v1_hdrsize; } /* * Get parents of the given rev. * * The specified rev must be valid and must not be nullrev. A returned * parent revision may be nullrev, but is guaranteed to be in valid range. */ static inline int index_get_parents(indexObject *self, Py_ssize_t rev, int *ps, int maxrev) { const char *data = index_deref(self, rev); ps[0] = getbe32(data + 24); ps[1] = getbe32(data + 28); /* If index file is corrupted, ps[] may point to invalid revisions. So * there is a risk of buffer overflow to trust them unconditionally. */ if (ps[0] < -1 || ps[0] > maxrev || ps[1] < -1 || ps[1] > maxrev) { PyErr_SetString(PyExc_ValueError, "parent out of range"); return -1; } return 0; } /* * Get parents of the given rev. * * If the specified rev is out of range, IndexError will be raised. If the * revlog entry is corrupted, ValueError may be raised. * * Returns 0 on success or -1 on failure. */ static int HgRevlogIndex_GetParents(PyObject *op, int rev, int *ps) { int tiprev; if (!op || !HgRevlogIndex_Check(op) || !ps) { PyErr_BadInternalCall(); return -1; } tiprev = (int)index_length((indexObject *)op) - 1; if (rev < -1 || rev > tiprev) { PyErr_Format(PyExc_IndexError, "rev out of range: %d", rev); return -1; } else if (rev == -1) { ps[0] = ps[1] = -1; return 0; } else { return index_get_parents((indexObject *)op, rev, ps, tiprev); } } static inline int64_t index_get_start(indexObject *self, Py_ssize_t rev) { const char *data; uint64_t offset; if (rev == nullrev) return 0; data = index_deref(self, rev); offset = getbe32(data + 4); if (rev == 0) { /* mask out version number for the first entry */ offset &= 0xFFFF; } else { uint32_t offset_high = getbe32(data); offset |= ((uint64_t)offset_high) << 32; } return (int64_t)(offset >> 16); } static inline int index_get_length(indexObject *self, Py_ssize_t rev) { const char *data; int tmp; if (rev == nullrev) return 0; data = index_deref(self, rev); tmp = (int)getbe32(data + 8); if (tmp < 0) { PyErr_Format(PyExc_OverflowError, "revlog entry size out of bound (%d)", tmp); return -1; } return tmp; } /* * RevlogNG format (all in big endian, data may be inlined): * 6 bytes: offset * 2 bytes: flags * 4 bytes: compressed length * 4 bytes: uncompressed length * 4 bytes: base revision * 4 bytes: link revision * 4 bytes: parent 1 revision * 4 bytes: parent 2 revision * 32 bytes: nodeid (only 20 bytes used) */ static PyObject *index_get(indexObject *self, Py_ssize_t pos) { uint64_t offset_flags; int comp_len, uncomp_len, base_rev, link_rev, parent_1, parent_2; const char *c_node_id; const char *data; Py_ssize_t length = index_length(self); if (pos == nullrev) { Py_INCREF(nullentry); return nullentry; } if (pos < 0 || pos >= length) { PyErr_SetString(PyExc_IndexError, "revlog index out of range"); return NULL; } data = index_deref(self, pos); if (data == NULL) return NULL; offset_flags = getbe32(data + 4); /* * The first entry on-disk needs the version number masked out, * but this doesn't apply if entries are added to an empty index. */ if (self->length && pos == 0) offset_flags &= 0xFFFF; else { uint32_t offset_high = getbe32(data); offset_flags |= ((uint64_t)offset_high) << 32; } comp_len = getbe32(data + 8); uncomp_len = getbe32(data + 12); base_rev = getbe32(data + 16); link_rev = getbe32(data + 20); parent_1 = getbe32(data + 24); parent_2 = getbe32(data + 28); c_node_id = data + 32; return Py_BuildValue(tuple_format, offset_flags, comp_len, uncomp_len, base_rev, link_rev, parent_1, parent_2, c_node_id, (Py_ssize_t)20); } /* * Return the 20-byte SHA of the node corresponding to the given rev. */ static const char *index_node(indexObject *self, Py_ssize_t pos) { Py_ssize_t length = index_length(self); const char *data; if (pos == nullrev) return nullid; if (pos >= length) return NULL; data = index_deref(self, pos); return data ? data + 32 : NULL; } /* * Return the 20-byte SHA of the node corresponding to the given rev. The * rev is assumed to be existing. If not, an exception is set. */ static const char *index_node_existing(indexObject *self, Py_ssize_t pos) { const char *node = index_node(self, pos); if (node == NULL) { PyErr_Format(PyExc_IndexError, "could not access rev %d", (int)pos); } return node; } static int nt_insert(nodetree *self, const char *node, int rev); static int node_check(PyObject *obj, char **node) { Py_ssize_t nodelen; if (PyBytes_AsStringAndSize(obj, node, &nodelen) == -1) return -1; if (nodelen == 20) return 0; PyErr_SetString(PyExc_ValueError, "20-byte hash required"); return -1; } static PyObject *index_append(indexObject *self, PyObject *obj) { unsigned long offset_flags; int rev, comp_len, uncomp_len, base_rev, link_rev, parent_1, parent_2; Py_ssize_t c_node_id_len; const char *c_node_id; char *data; if (!PyArg_ParseTuple(obj, tuple_format, &offset_flags, &comp_len, &uncomp_len, &base_rev, &link_rev, &parent_1, &parent_2, &c_node_id, &c_node_id_len)) { PyErr_SetString(PyExc_TypeError, "8-tuple required"); return NULL; } if (c_node_id_len != 20 && c_node_id_len != 32) { PyErr_SetString(PyExc_TypeError, "invalid node"); return NULL; } if (self->new_length == self->added_length) { size_t new_added_length = self->added_length ? self->added_length * 2 : 4096; void *new_added = PyMem_Realloc(self->added, new_added_length * v1_hdrsize); if (!new_added) return PyErr_NoMemory(); self->added = new_added; self->added_length = new_added_length; } rev = self->length + self->new_length; data = self->added + v1_hdrsize * self->new_length++; putbe32(offset_flags >> 32, data); putbe32(offset_flags & 0xffffffffU, data + 4); putbe32(comp_len, data + 8); putbe32(uncomp_len, data + 12); putbe32(base_rev, data + 16); putbe32(link_rev, data + 20); putbe32(parent_1, data + 24); putbe32(parent_2, data + 28); memcpy(data + 32, c_node_id, c_node_id_len); memset(data + 32 + c_node_id_len, 0, 32 - c_node_id_len); if (self->ntinitialized) nt_insert(&self->nt, c_node_id, rev); Py_CLEAR(self->headrevs); Py_RETURN_NONE; } static PyObject *index_stats(indexObject *self) { PyObject *obj = PyDict_New(); PyObject *s = NULL; PyObject *t = NULL; if (obj == NULL) return NULL; #define istat(__n, __d) \ do { \ s = PyBytes_FromString(__d); \ t = PyInt_FromSsize_t(self->__n); \ if (!s || !t) \ goto bail; \ if (PyDict_SetItem(obj, s, t) == -1) \ goto bail; \ Py_CLEAR(s); \ Py_CLEAR(t); \ } while (0) if (self->added_length) istat(new_length, "index entries added"); istat(length, "revs in memory"); istat(ntlookups, "node trie lookups"); istat(ntmisses, "node trie misses"); istat(ntrev, "node trie last rev scanned"); if (self->ntinitialized) { istat(nt.capacity, "node trie capacity"); istat(nt.depth, "node trie depth"); istat(nt.length, "node trie count"); istat(nt.splits, "node trie splits"); } #undef istat return obj; bail: Py_XDECREF(obj); Py_XDECREF(s); Py_XDECREF(t); return NULL; } /* * When we cache a list, we want to be sure the caller can't mutate * the cached copy. */ static PyObject *list_copy(PyObject *list) { Py_ssize_t len = PyList_GET_SIZE(list); PyObject *newlist = PyList_New(len); Py_ssize_t i; if (newlist == NULL) return NULL; for (i = 0; i < len; i++) { PyObject *obj = PyList_GET_ITEM(list, i); Py_INCREF(obj); PyList_SET_ITEM(newlist, i, obj); } return newlist; } static int check_filter(PyObject *filter, Py_ssize_t arg) { if (filter) { PyObject *arglist, *result; int isfiltered; arglist = Py_BuildValue("(n)", arg); if (!arglist) { return -1; } result = PyEval_CallObject(filter, arglist); Py_DECREF(arglist); if (!result) { return -1; } /* PyObject_IsTrue returns 1 if true, 0 if false, -1 if error, * same as this function, so we can just return it directly.*/ isfiltered = PyObject_IsTrue(result); Py_DECREF(result); return isfiltered; } else { return 0; } } static inline void set_phase_from_parents(char *phases, int parent_1, int parent_2, Py_ssize_t i) { if (parent_1 >= 0 && phases[parent_1] > phases[i]) phases[i] = phases[parent_1]; if (parent_2 >= 0 && phases[parent_2] > phases[i]) phases[i] = phases[parent_2]; } static PyObject *reachableroots2(indexObject *self, PyObject *args) { /* Input */ long minroot; PyObject *includepatharg = NULL; int includepath = 0; /* heads and roots are lists */ PyObject *heads = NULL; PyObject *roots = NULL; PyObject *reachable = NULL; PyObject *val; Py_ssize_t len = index_length(self); long revnum; Py_ssize_t k; Py_ssize_t i; Py_ssize_t l; int r; int parents[2]; /* Internal data structure: * tovisit: array of length len+1 (all revs + nullrev), filled upto * lentovisit * * revstates: array of length len+1 (all revs + nullrev) */ int *tovisit = NULL; long lentovisit = 0; enum { RS_SEEN = 1, RS_ROOT = 2, RS_REACHABLE = 4 }; char *revstates = NULL; /* Get arguments */ if (!PyArg_ParseTuple(args, "lO!O!O!", &minroot, &PyList_Type, &heads, &PyList_Type, &roots, &PyBool_Type, &includepatharg)) goto bail; if (includepatharg == Py_True) includepath = 1; /* Initialize return set */ reachable = PyList_New(0); if (reachable == NULL) goto bail; /* Initialize internal datastructures */ tovisit = (int *)malloc((len + 1) * sizeof(int)); if (tovisit == NULL) { PyErr_NoMemory(); goto bail; } revstates = (char *)calloc(len + 1, 1); if (revstates == NULL) { PyErr_NoMemory(); goto bail; } l = PyList_GET_SIZE(roots); for (i = 0; i < l; i++) { revnum = PyInt_AsLong(PyList_GET_ITEM(roots, i)); if (revnum == -1 && PyErr_Occurred()) goto bail; /* If root is out of range, e.g. wdir(), it must be unreachable * from heads. So we can just ignore it. */ if (revnum + 1 < 0 || revnum + 1 >= len + 1) continue; revstates[revnum + 1] |= RS_ROOT; } /* Populate tovisit with all the heads */ l = PyList_GET_SIZE(heads); for (i = 0; i < l; i++) { revnum = PyInt_AsLong(PyList_GET_ITEM(heads, i)); if (revnum == -1 && PyErr_Occurred()) goto bail; if (revnum + 1 < 0 || revnum + 1 >= len + 1) { PyErr_SetString(PyExc_IndexError, "head out of range"); goto bail; } if (!(revstates[revnum + 1] & RS_SEEN)) { tovisit[lentovisit++] = (int)revnum; revstates[revnum + 1] |= RS_SEEN; } } /* Visit the tovisit list and find the reachable roots */ k = 0; while (k < lentovisit) { /* Add the node to reachable if it is a root*/ revnum = tovisit[k++]; if (revstates[revnum + 1] & RS_ROOT) { revstates[revnum + 1] |= RS_REACHABLE; val = PyInt_FromLong(revnum); if (val == NULL) goto bail; r = PyList_Append(reachable, val); Py_DECREF(val); if (r < 0) goto bail; if (includepath == 0) continue; } /* Add its parents to the list of nodes to visit */ if (revnum == nullrev) continue; r = index_get_parents(self, revnum, parents, (int)len - 1); if (r < 0) goto bail; for (i = 0; i < 2; i++) { if (!(revstates[parents[i] + 1] & RS_SEEN) && parents[i] >= minroot) { tovisit[lentovisit++] = parents[i]; revstates[parents[i] + 1] |= RS_SEEN; } } } /* Find all the nodes in between the roots we found and the heads * and add them to the reachable set */ if (includepath == 1) { long minidx = minroot; if (minidx < 0) minidx = 0; for (i = minidx; i < len; i++) { if (!(revstates[i + 1] & RS_SEEN)) continue; r = index_get_parents(self, i, parents, (int)len - 1); /* Corrupted index file, error is set from * index_get_parents */ if (r < 0) goto bail; if (((revstates[parents[0] + 1] | revstates[parents[1] + 1]) & RS_REACHABLE) && !(revstates[i + 1] & RS_REACHABLE)) { revstates[i + 1] |= RS_REACHABLE; val = PyInt_FromSsize_t(i); if (val == NULL) goto bail; r = PyList_Append(reachable, val); Py_DECREF(val); if (r < 0) goto bail; } } } free(revstates); free(tovisit); return reachable; bail: Py_XDECREF(reachable); free(revstates); free(tovisit); return NULL; } static int add_roots_get_min(indexObject *self, PyObject *roots, char *phases, char phase) { Py_ssize_t len = index_length(self); PyObject *item; PyObject *iterator; int rev, minrev = -1; char *node; if (!PySet_Check(roots)) { PyErr_SetString(PyExc_TypeError, "roots must be a set of nodes"); return -2; } iterator = PyObject_GetIter(roots); if (iterator == NULL) return -2; while ((item = PyIter_Next(iterator))) { if (node_check(item, &node) == -1) goto failed; rev = index_find_node(self, node, 20); /* null is implicitly public, so negative is invalid */ if (rev < 0 || rev >= len) goto failed; phases[rev] = phase; if (minrev == -1 || minrev > rev) minrev = rev; Py_DECREF(item); } Py_DECREF(iterator); return minrev; failed: Py_DECREF(iterator); Py_DECREF(item); return -2; } static PyObject *compute_phases_map_sets(indexObject *self, PyObject *args) { /* 0: public (untracked), 1: draft, 2: secret, 32: archive, 96: internal */ static const char trackedphases[] = {1, 2, 32, 96}; PyObject *roots = Py_None; PyObject *phasesetsdict = NULL; PyObject *phasesets[4] = {NULL, NULL, NULL, NULL}; Py_ssize_t len = index_length(self); char *phases = NULL; int minphaserev = -1, rev, i; const int numphases = (int)(sizeof(phasesets) / sizeof(phasesets[0])); if (!PyArg_ParseTuple(args, "O", &roots)) return NULL; if (roots == NULL || !PyDict_Check(roots)) { PyErr_SetString(PyExc_TypeError, "roots must be a dictionary"); return NULL; } phases = calloc(len, 1); if (phases == NULL) { PyErr_NoMemory(); return NULL; } for (i = 0; i < numphases; ++i) { PyObject *pyphase = PyInt_FromLong(trackedphases[i]); PyObject *phaseroots = NULL; if (pyphase == NULL) goto release; phaseroots = PyDict_GetItem(roots, pyphase); Py_DECREF(pyphase); if (phaseroots == NULL) continue; rev = add_roots_get_min(self, phaseroots, phases, trackedphases[i]); if (rev == -2) goto release; if (rev != -1 && (minphaserev == -1 || rev < minphaserev)) minphaserev = rev; } for (i = 0; i < numphases; ++i) { phasesets[i] = PySet_New(NULL); if (phasesets[i] == NULL) goto release; } if (minphaserev == -1) minphaserev = len; for (rev = minphaserev; rev < len; ++rev) { PyObject *pyphase = NULL; PyObject *pyrev = NULL; int parents[2]; /* * The parent lookup could be skipped for phaseroots, but * phase --force would historically not recompute them * correctly, leaving descendents with a lower phase around. * As such, unconditionally recompute the phase. */ if (index_get_parents(self, rev, parents, (int)len - 1) < 0) goto release; set_phase_from_parents(phases, parents[0], parents[1], rev); switch (phases[rev]) { case 0: continue; case 1: pyphase = phasesets[0]; break; case 2: pyphase = phasesets[1]; break; case 32: pyphase = phasesets[2]; break; case 96: pyphase = phasesets[3]; break; default: /* this should never happen since the phase number is * specified by this function. */ PyErr_SetString(PyExc_SystemError, "bad phase number in internal list"); goto release; } pyrev = PyInt_FromLong(rev); if (pyrev == NULL) goto release; if (PySet_Add(pyphase, pyrev) == -1) { Py_DECREF(pyrev); goto release; } Py_DECREF(pyrev); } phasesetsdict = _dict_new_presized(numphases); if (phasesetsdict == NULL) goto release; for (i = 0; i < numphases; ++i) { PyObject *pyphase = PyInt_FromLong(trackedphases[i]); if (pyphase == NULL) goto release; if (PyDict_SetItem(phasesetsdict, pyphase, phasesets[i]) == -1) { Py_DECREF(pyphase); goto release; } Py_DECREF(phasesets[i]); phasesets[i] = NULL; } return Py_BuildValue("nN", len, phasesetsdict); release: for (i = 0; i < numphases; ++i) Py_XDECREF(phasesets[i]); Py_XDECREF(phasesetsdict); free(phases); return NULL; } static PyObject *index_headrevs(indexObject *self, PyObject *args) { Py_ssize_t i, j, len; char *nothead = NULL; PyObject *heads = NULL; PyObject *filter = NULL; PyObject *filteredrevs = Py_None; if (!PyArg_ParseTuple(args, "|O", &filteredrevs)) { return NULL; } if (self->headrevs && filteredrevs == self->filteredrevs) return list_copy(self->headrevs); Py_DECREF(self->filteredrevs); self->filteredrevs = filteredrevs; Py_INCREF(filteredrevs); if (filteredrevs != Py_None) { filter = PyObject_GetAttrString(filteredrevs, "__contains__"); if (!filter) { PyErr_SetString( PyExc_TypeError, "filteredrevs has no attribute __contains__"); goto bail; } } len = index_length(self); heads = PyList_New(0); if (heads == NULL) goto bail; if (len == 0) { PyObject *nullid = PyInt_FromLong(-1); if (nullid == NULL || PyList_Append(heads, nullid) == -1) { Py_XDECREF(nullid); goto bail; } goto done; } nothead = calloc(len, 1); if (nothead == NULL) { PyErr_NoMemory(); goto bail; } for (i = len - 1; i >= 0; i--) { int isfiltered; int parents[2]; /* If nothead[i] == 1, it means we've seen an unfiltered child * of this node already, and therefore this node is not * filtered. So we can skip the expensive check_filter step. */ if (nothead[i] != 1) { isfiltered = check_filter(filter, i); if (isfiltered == -1) { PyErr_SetString(PyExc_TypeError, "unable to check filter"); goto bail; } if (isfiltered) { nothead[i] = 1; continue; } } if (index_get_parents(self, i, parents, (int)len - 1) < 0) goto bail; for (j = 0; j < 2; j++) { if (parents[j] >= 0) nothead[parents[j]] = 1; } } for (i = 0; i < len; i++) { PyObject *head; if (nothead[i]) continue; head = PyInt_FromSsize_t(i); if (head == NULL || PyList_Append(heads, head) == -1) { Py_XDECREF(head); goto bail; } } done: self->headrevs = heads; Py_XDECREF(filter); free(nothead); return list_copy(self->headrevs); bail: Py_XDECREF(filter); Py_XDECREF(heads); free(nothead); return NULL; } /** * Obtain the base revision index entry. * * Callers must ensure that rev >= 0 or illegal memory access may occur. */ static inline int index_baserev(indexObject *self, int rev) { const char *data; int result; data = index_deref(self, rev); if (data == NULL) return -2; result = getbe32(data + 16); if (result > rev) { PyErr_Format( PyExc_ValueError, "corrupted revlog, revision base above revision: %d, %d", rev, result); return -2; } if (result < -1) { PyErr_Format( PyExc_ValueError, "corrupted revlog, revision base out of range: %d, %d", rev, result); return -2; } return result; } /** * Find if a revision is a snapshot or not * * Only relevant for sparse-revlog case. * Callers must ensure that rev is in a valid range. */ static int index_issnapshotrev(indexObject *self, Py_ssize_t rev) { int ps[2]; Py_ssize_t base; while (rev >= 0) { base = (Py_ssize_t)index_baserev(self, rev); if (base == rev) { base = -1; } if (base == -2) { assert(PyErr_Occurred()); return -1; } if (base == -1) { return 1; } if (index_get_parents(self, rev, ps, (int)rev) < 0) { assert(PyErr_Occurred()); return -1; }; if (base == ps[0] || base == ps[1]) { return 0; } rev = base; } return rev == -1; } static PyObject *index_issnapshot(indexObject *self, PyObject *value) { long rev; int issnap; Py_ssize_t length = index_length(self); if (!pylong_to_long(value, &rev)) { return NULL; } if (rev < -1 || rev >= length) { PyErr_Format(PyExc_ValueError, "revlog index out of range: %ld", rev); return NULL; }; issnap = index_issnapshotrev(self, (Py_ssize_t)rev); if (issnap < 0) { return NULL; }; return PyBool_FromLong((long)issnap); } static PyObject *index_findsnapshots(indexObject *self, PyObject *args) { Py_ssize_t start_rev; PyObject *cache; Py_ssize_t base; Py_ssize_t rev; PyObject *key = NULL; PyObject *value = NULL; const Py_ssize_t length = index_length(self); if (!PyArg_ParseTuple(args, "O!n", &PyDict_Type, &cache, &start_rev)) { return NULL; } for (rev = start_rev; rev < length; rev++) { int issnap; PyObject *allvalues = NULL; issnap = index_issnapshotrev(self, rev); if (issnap < 0) { goto bail; } if (issnap == 0) { continue; } base = (Py_ssize_t)index_baserev(self, rev); if (base == rev) { base = -1; } if (base == -2) { assert(PyErr_Occurred()); goto bail; } key = PyInt_FromSsize_t(base); allvalues = PyDict_GetItem(cache, key); if (allvalues == NULL && PyErr_Occurred()) { goto bail; } if (allvalues == NULL) { int r; allvalues = PyList_New(0); if (!allvalues) { goto bail; } r = PyDict_SetItem(cache, key, allvalues); Py_DECREF(allvalues); if (r < 0) { goto bail; } } value = PyInt_FromSsize_t(rev); if (PyList_Append(allvalues, value)) { goto bail; } Py_CLEAR(key); Py_CLEAR(value); } Py_RETURN_NONE; bail: Py_XDECREF(key); Py_XDECREF(value); return NULL; } static PyObject *index_deltachain(indexObject *self, PyObject *args) { int rev, generaldelta; PyObject *stoparg; int stoprev, iterrev, baserev = -1; int stopped; PyObject *chain = NULL, *result = NULL; const Py_ssize_t length = index_length(self); if (!PyArg_ParseTuple(args, "iOi", &rev, &stoparg, &generaldelta)) { return NULL; } if (PyInt_Check(stoparg)) { stoprev = (int)PyInt_AsLong(stoparg); if (stoprev == -1 && PyErr_Occurred()) { return NULL; } } else if (stoparg == Py_None) { stoprev = -2; } else { PyErr_SetString(PyExc_ValueError, "stoprev must be integer or None"); return NULL; } if (rev < 0 || rev >= length) { PyErr_SetString(PyExc_ValueError, "revlog index out of range"); return NULL; } chain = PyList_New(0); if (chain == NULL) { return NULL; } baserev = index_baserev(self, rev); /* This should never happen. */ if (baserev <= -2) { /* Error should be set by index_deref() */ assert(PyErr_Occurred()); goto bail; } iterrev = rev; while (iterrev != baserev && iterrev != stoprev) { PyObject *value = PyInt_FromLong(iterrev); if (value == NULL) { goto bail; } if (PyList_Append(chain, value)) { Py_DECREF(value); goto bail; } Py_DECREF(value); if (generaldelta) { iterrev = baserev; } else { iterrev--; } if (iterrev < 0) { break; } if (iterrev >= length) { PyErr_SetString(PyExc_IndexError, "revision outside index"); return NULL; } baserev = index_baserev(self, iterrev); /* This should never happen. */ if (baserev <= -2) { /* Error should be set by index_deref() */ assert(PyErr_Occurred()); goto bail; } } if (iterrev == stoprev) { stopped = 1; } else { PyObject *value = PyInt_FromLong(iterrev); if (value == NULL) { goto bail; } if (PyList_Append(chain, value)) { Py_DECREF(value); goto bail; } Py_DECREF(value); stopped = 0; } if (PyList_Reverse(chain)) { goto bail; } result = Py_BuildValue("OO", chain, stopped ? Py_True : Py_False); Py_DECREF(chain); return result; bail: Py_DECREF(chain); return NULL; } static inline int64_t index_segment_span(indexObject *self, Py_ssize_t start_rev, Py_ssize_t end_rev) { int64_t start_offset; int64_t end_offset; int end_size; start_offset = index_get_start(self, start_rev); if (start_offset < 0) { return -1; } end_offset = index_get_start(self, end_rev); if (end_offset < 0) { return -1; } end_size = index_get_length(self, end_rev); if (end_size < 0) { return -1; } if (end_offset < start_offset) { PyErr_Format(PyExc_ValueError, "corrupted revlog index: inconsistent offset " "between revisions (%zd) and (%zd)", start_rev, end_rev); return -1; } return (end_offset - start_offset) + (int64_t)end_size; } /* returns endidx so that revs[startidx:endidx] has no empty trailing revs */ static Py_ssize_t trim_endidx(indexObject *self, const Py_ssize_t *revs, Py_ssize_t startidx, Py_ssize_t endidx) { int length; while (endidx > 1 && endidx > startidx) { length = index_get_length(self, revs[endidx - 1]); if (length < 0) { return -1; } if (length != 0) { break; } endidx -= 1; } return endidx; } struct Gap { int64_t size; Py_ssize_t idx; }; static int gap_compare(const void *left, const void *right) { const struct Gap *l_left = ((const struct Gap *)left); const struct Gap *l_right = ((const struct Gap *)right); if (l_left->size < l_right->size) { return -1; } else if (l_left->size > l_right->size) { return 1; } return 0; } static int Py_ssize_t_compare(const void *left, const void *right) { const Py_ssize_t l_left = *(const Py_ssize_t *)left; const Py_ssize_t l_right = *(const Py_ssize_t *)right; if (l_left < l_right) { return -1; } else if (l_left > l_right) { return 1; } return 0; } static PyObject *index_slicechunktodensity(indexObject *self, PyObject *args) { /* method arguments */ PyObject *list_revs = NULL; /* revisions in the chain */ double targetdensity = 0; /* min density to achieve */ Py_ssize_t mingapsize = 0; /* threshold to ignore gaps */ /* other core variables */ Py_ssize_t idxlen = index_length(self); Py_ssize_t i; /* used for various iteration */ PyObject *result = NULL; /* the final return of the function */ /* generic information about the delta chain being slice */ Py_ssize_t num_revs = 0; /* size of the full delta chain */ Py_ssize_t *revs = NULL; /* native array of revision in the chain */ int64_t chainpayload = 0; /* sum of all delta in the chain */ int64_t deltachainspan = 0; /* distance from first byte to last byte */ /* variable used for slicing the delta chain */ int64_t readdata = 0; /* amount of data currently planned to be read */ double density = 0; /* ration of payload data compared to read ones */ int64_t previous_end; struct Gap *gaps = NULL; /* array of notable gap in the chain */ Py_ssize_t num_gaps = 0; /* total number of notable gap recorded so far */ Py_ssize_t *selected_indices = NULL; /* indices of gap skipped over */ Py_ssize_t num_selected = 0; /* number of gaps skipped */ PyObject *chunk = NULL; /* individual slice */ PyObject *allchunks = NULL; /* all slices */ Py_ssize_t previdx; /* parsing argument */ if (!PyArg_ParseTuple(args, "O!dn", &PyList_Type, &list_revs, &targetdensity, &mingapsize)) { goto bail; } /* If the delta chain contains a single element, we do not need slicing */ num_revs = PyList_GET_SIZE(list_revs); if (num_revs <= 1) { result = PyTuple_Pack(1, list_revs); goto done; } /* Turn the python list into a native integer array (for efficiency) */ revs = (Py_ssize_t *)calloc(num_revs, sizeof(Py_ssize_t)); if (revs == NULL) { PyErr_NoMemory(); goto bail; } for (i = 0; i < num_revs; i++) { Py_ssize_t revnum = PyInt_AsLong(PyList_GET_ITEM(list_revs, i)); if (revnum == -1 && PyErr_Occurred()) { goto bail; } if (revnum < nullrev || revnum >= idxlen) { PyErr_Format(PyExc_IndexError, "index out of range: %zd", revnum); goto bail; } revs[i] = revnum; } /* Compute and check various property of the unsliced delta chain */ deltachainspan = index_segment_span(self, revs[0], revs[num_revs - 1]); if (deltachainspan < 0) { goto bail; } if (deltachainspan <= mingapsize) { result = PyTuple_Pack(1, list_revs); goto done; } chainpayload = 0; for (i = 0; i < num_revs; i++) { int tmp = index_get_length(self, revs[i]); if (tmp < 0) { goto bail; } chainpayload += tmp; } readdata = deltachainspan; density = 1.0; if (0 < deltachainspan) { density = (double)chainpayload / (double)deltachainspan; } if (density >= targetdensity) { result = PyTuple_Pack(1, list_revs); goto done; } /* if chain is too sparse, look for relevant gaps */ gaps = (struct Gap *)calloc(num_revs, sizeof(struct Gap)); if (gaps == NULL) { PyErr_NoMemory(); goto bail; } previous_end = -1; for (i = 0; i < num_revs; i++) { int64_t revstart; int revsize; revstart = index_get_start(self, revs[i]); if (revstart < 0) { goto bail; }; revsize = index_get_length(self, revs[i]); if (revsize < 0) { goto bail; }; if (revsize == 0) { continue; } if (previous_end >= 0) { int64_t gapsize = revstart - previous_end; if (gapsize > mingapsize) { gaps[num_gaps].size = gapsize; gaps[num_gaps].idx = i; num_gaps += 1; } } previous_end = revstart + revsize; } if (num_gaps == 0) { result = PyTuple_Pack(1, list_revs); goto done; } qsort(gaps, num_gaps, sizeof(struct Gap), &gap_compare); /* Slice the largest gap first, they improve the density the most */ selected_indices = (Py_ssize_t *)malloc((num_gaps + 1) * sizeof(Py_ssize_t)); if (selected_indices == NULL) { PyErr_NoMemory(); goto bail; } for (i = num_gaps - 1; i >= 0; i--) { selected_indices[num_selected] = gaps[i].idx; readdata -= gaps[i].size; num_selected += 1; if (readdata <= 0) { density = 1.0; } else { density = (double)chainpayload / (double)readdata; } if (density >= targetdensity) { break; } } qsort(selected_indices, num_selected, sizeof(Py_ssize_t), &Py_ssize_t_compare); /* create the resulting slice */ allchunks = PyList_New(0); if (allchunks == NULL) { goto bail; } previdx = 0; selected_indices[num_selected] = num_revs; for (i = 0; i <= num_selected; i++) { Py_ssize_t idx = selected_indices[i]; Py_ssize_t endidx = trim_endidx(self, revs, previdx, idx); if (endidx < 0) { goto bail; } if (previdx < endidx) { chunk = PyList_GetSlice(list_revs, previdx, endidx); if (chunk == NULL) { goto bail; } if (PyList_Append(allchunks, chunk) == -1) { goto bail; } Py_DECREF(chunk); chunk = NULL; } previdx = idx; } result = allchunks; goto done; bail: Py_XDECREF(allchunks); Py_XDECREF(chunk); done: free(revs); free(gaps); free(selected_indices); return result; } static inline int nt_level(const char *node, Py_ssize_t level) { int v = node[level >> 1]; if (!(level & 1)) v >>= 4; return v & 0xf; } /* * Return values: * * -4: match is ambiguous (multiple candidates) * -2: not found * rest: valid rev */ static int nt_find(nodetree *self, const char *node, Py_ssize_t nodelen, int hex) { int (*getnybble)(const char *, Py_ssize_t) = hex ? hexdigit : nt_level; int level, maxlevel, off; if (nodelen == 20 && node[0] == '\0' && memcmp(node, nullid, 20) == 0) return -1; if (hex) maxlevel = nodelen > 40 ? 40 : (int)nodelen; else maxlevel = nodelen > 20 ? 40 : ((int)nodelen * 2); for (level = off = 0; level < maxlevel; level++) { int k = getnybble(node, level); nodetreenode *n = &self->nodes[off]; int v = n->children[k]; if (v < 0) { const char *n; Py_ssize_t i; v = -(v + 2); n = index_node(self->index, v); if (n == NULL) return -2; for (i = level; i < maxlevel; i++) if (getnybble(node, i) != nt_level(n, i)) return -2; return v; } if (v == 0) return -2; off = v; } /* multiple matches against an ambiguous prefix */ return -4; } static int nt_new(nodetree *self) { if (self->length == self->capacity) { unsigned newcapacity; nodetreenode *newnodes; newcapacity = self->capacity * 2; if (newcapacity >= INT_MAX / sizeof(nodetreenode)) { PyErr_SetString(PyExc_MemoryError, "overflow in nt_new"); return -1; } newnodes = realloc(self->nodes, newcapacity * sizeof(nodetreenode)); if (newnodes == NULL) { PyErr_SetString(PyExc_MemoryError, "out of memory"); return -1; } self->capacity = newcapacity; self->nodes = newnodes; memset(&self->nodes[self->length], 0, sizeof(nodetreenode) * (self->capacity - self->length)); } return self->length++; } static int nt_insert(nodetree *self, const char *node, int rev) { int level = 0; int off = 0; while (level < 40) { int k = nt_level(node, level); nodetreenode *n; int v; n = &self->nodes[off]; v = n->children[k]; if (v == 0) { n->children[k] = -rev - 2; return 0; } if (v < 0) { const char *oldnode = index_node_existing(self->index, -(v + 2)); int noff; if (oldnode == NULL) return -1; if (!memcmp(oldnode, node, 20)) { n->children[k] = -rev - 2; return 0; } noff = nt_new(self); if (noff == -1) return -1; /* self->nodes may have been changed by realloc */ self->nodes[off].children[k] = noff; off = noff; n = &self->nodes[off]; n->children[nt_level(oldnode, ++level)] = v; if (level > self->depth) self->depth = level; self->splits += 1; } else { level += 1; off = v; } } return -1; } static PyObject *ntobj_insert(nodetreeObject *self, PyObject *args) { Py_ssize_t rev; const char *node; Py_ssize_t length; if (!PyArg_ParseTuple(args, "n", &rev)) return NULL; length = index_length(self->nt.index); if (rev < 0 || rev >= length) { PyErr_SetString(PyExc_ValueError, "revlog index out of range"); return NULL; } node = index_node_existing(self->nt.index, rev); if (nt_insert(&self->nt, node, (int)rev) == -1) return NULL; Py_RETURN_NONE; } static int nt_delete_node(nodetree *self, const char *node) { /* rev==-2 happens to get encoded as 0, which is interpreted as not set */ return nt_insert(self, node, -2); } static int nt_init(nodetree *self, indexObject *index, unsigned capacity) { /* Initialize before overflow-checking to avoid nt_dealloc() crash. */ self->nodes = NULL; self->index = index; /* The input capacity is in terms of revisions, while the field is in * terms of nodetree nodes. */ self->capacity = (capacity < 4 ? 4 : capacity / 2); self->depth = 0; self->splits = 0; if ((size_t)self->capacity > INT_MAX / sizeof(nodetreenode)) { PyErr_SetString(PyExc_ValueError, "overflow in init_nt"); return -1; } self->nodes = calloc(self->capacity, sizeof(nodetreenode)); if (self->nodes == NULL) { PyErr_NoMemory(); return -1; } self->length = 1; return 0; } static int ntobj_init(nodetreeObject *self, PyObject *args) { PyObject *index; unsigned capacity; if (!PyArg_ParseTuple(args, "O!I", &HgRevlogIndex_Type, &index, &capacity)) return -1; Py_INCREF(index); return nt_init(&self->nt, (indexObject *)index, capacity); } static int nt_partialmatch(nodetree *self, const char *node, Py_ssize_t nodelen) { return nt_find(self, node, nodelen, 1); } /* * Find the length of the shortest unique prefix of node. * * Return values: * * -3: error (exception set) * -2: not found (no exception set) * rest: length of shortest prefix */ static int nt_shortest(nodetree *self, const char *node) { int level, off; for (level = off = 0; level < 40; level++) { int k, v; nodetreenode *n = &self->nodes[off]; k = nt_level(node, level); v = n->children[k]; if (v < 0) { const char *n; v = -(v + 2); n = index_node_existing(self->index, v); if (n == NULL) return -3; if (memcmp(node, n, 20) != 0) /* * Found a unique prefix, but it wasn't for the * requested node (i.e the requested node does * not exist). */ return -2; return level + 1; } if (v == 0) return -2; off = v; } /* * The node was still not unique after 40 hex digits, so this won't * happen. Also, if we get here, then there's a programming error in * this file that made us insert a node longer than 40 hex digits. */ PyErr_SetString(PyExc_Exception, "broken node tree"); return -3; } static PyObject *ntobj_shortest(nodetreeObject *self, PyObject *args) { PyObject *val; char *node; int length; if (!PyArg_ParseTuple(args, "O", &val)) return NULL; if (node_check(val, &node) == -1) return NULL; length = nt_shortest(&self->nt, node); if (length == -3) return NULL; if (length == -2) { raise_revlog_error(); return NULL; } return PyInt_FromLong(length); } static void nt_dealloc(nodetree *self) { free(self->nodes); self->nodes = NULL; } static void ntobj_dealloc(nodetreeObject *self) { Py_XDECREF(self->nt.index); nt_dealloc(&self->nt); PyObject_Del(self); } static PyMethodDef ntobj_methods[] = { {"insert", (PyCFunction)ntobj_insert, METH_VARARGS, "insert an index entry"}, {"shortest", (PyCFunction)ntobj_shortest, METH_VARARGS, "find length of shortest hex nodeid of a binary ID"}, {NULL} /* Sentinel */ }; static PyTypeObject nodetreeType = { PyVarObject_HEAD_INIT(NULL, 0) /* header */ "parsers.nodetree", /* tp_name */ sizeof(nodetreeObject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)ntobj_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ 0, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ "nodetree", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ ntobj_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)ntobj_init, /* tp_init */ 0, /* tp_alloc */ }; static int index_init_nt(indexObject *self) { if (!self->ntinitialized) { if (nt_init(&self->nt, self, (int)self->length) == -1) { nt_dealloc(&self->nt); return -1; } if (nt_insert(&self->nt, nullid, -1) == -1) { nt_dealloc(&self->nt); return -1; } self->ntinitialized = 1; self->ntrev = (int)index_length(self); self->ntlookups = 1; self->ntmisses = 0; } return 0; } /* * Return values: * * -3: error (exception set) * -2: not found (no exception set) * rest: valid rev */ static int index_find_node(indexObject *self, const char *node, Py_ssize_t nodelen) { int rev; if (index_init_nt(self) == -1) return -3; self->ntlookups++; rev = nt_find(&self->nt, node, nodelen, 0); if (rev >= -1) return rev; /* * For the first handful of lookups, we scan the entire index, * and cache only the matching nodes. This optimizes for cases * like "hg tip", where only a few nodes are accessed. * * After that, we cache every node we visit, using a single * scan amortized over multiple lookups. This gives the best * bulk performance, e.g. for "hg log". */ if (self->ntmisses++ < 4) { for (rev = self->ntrev - 1; rev >= 0; rev--) { const char *n = index_node_existing(self, rev); if (n == NULL) return -3; if (memcmp(node, n, nodelen > 20 ? 20 : nodelen) == 0) { if (nt_insert(&self->nt, n, rev) == -1) return -3; break; } } } else { for (rev = self->ntrev - 1; rev >= 0; rev--) { const char *n = index_node_existing(self, rev); if (n == NULL) return -3; if (nt_insert(&self->nt, n, rev) == -1) { self->ntrev = rev + 1; return -3; } if (memcmp(node, n, nodelen > 20 ? 20 : nodelen) == 0) { break; } } self->ntrev = rev; } if (rev >= 0) return rev; return -2; } static PyObject *index_getitem(indexObject *self, PyObject *value) { char *node; int rev; if (PyInt_Check(value)) { long idx; if (!pylong_to_long(value, &idx)) { return NULL; } return index_get(self, idx); } if (node_check(value, &node) == -1) return NULL; rev = index_find_node(self, node, 20); if (rev >= -1) return PyInt_FromLong(rev); if (rev == -2) raise_revlog_error(); return NULL; } /* * Fully populate the radix tree. */ static int index_populate_nt(indexObject *self) { int rev; if (self->ntrev > 0) { for (rev = self->ntrev - 1; rev >= 0; rev--) { const char *n = index_node_existing(self, rev); if (n == NULL) return -1; if (nt_insert(&self->nt, n, rev) == -1) return -1; } self->ntrev = -1; } return 0; } static PyObject *index_partialmatch(indexObject *self, PyObject *args) { const char *fullnode; Py_ssize_t nodelen; char *node; int rev, i; if (!PyArg_ParseTuple(args, PY23("s#", "y#"), &node, &nodelen)) return NULL; if (nodelen < 1) { PyErr_SetString(PyExc_ValueError, "key too short"); return NULL; } if (nodelen > 40) { PyErr_SetString(PyExc_ValueError, "key too long"); return NULL; } for (i = 0; i < nodelen; i++) hexdigit(node, i); if (PyErr_Occurred()) { /* input contains non-hex characters */ PyErr_Clear(); Py_RETURN_NONE; } if (index_init_nt(self) == -1) return NULL; if (index_populate_nt(self) == -1) return NULL; rev = nt_partialmatch(&self->nt, node, nodelen); switch (rev) { case -4: raise_revlog_error(); return NULL; case -2: Py_RETURN_NONE; case -1: return PyBytes_FromStringAndSize(nullid, 20); } fullnode = index_node_existing(self, rev); if (fullnode == NULL) { return NULL; } return PyBytes_FromStringAndSize(fullnode, 20); } static PyObject *index_shortest(indexObject *self, PyObject *args) { PyObject *val; char *node; int length; if (!PyArg_ParseTuple(args, "O", &val)) return NULL; if (node_check(val, &node) == -1) return NULL; self->ntlookups++; if (index_init_nt(self) == -1) return NULL; if (index_populate_nt(self) == -1) return NULL; length = nt_shortest(&self->nt, node); if (length == -3) return NULL; if (length == -2) { raise_revlog_error(); return NULL; } return PyInt_FromLong(length); } static PyObject *index_m_get(indexObject *self, PyObject *args) { PyObject *val; char *node; int rev; if (!PyArg_ParseTuple(args, "O", &val)) return NULL; if (node_check(val, &node) == -1) return NULL; rev = index_find_node(self, node, 20); if (rev == -3) return NULL; if (rev == -2) Py_RETURN_NONE; return PyInt_FromLong(rev); } static int index_contains(indexObject *self, PyObject *value) { char *node; if (PyInt_Check(value)) { long rev; if (!pylong_to_long(value, &rev)) { return -1; } return rev >= -1 && rev < index_length(self); } if (node_check(value, &node) == -1) return -1; switch (index_find_node(self, node, 20)) { case -3: return -1; case -2: return 0; default: return 1; } } static PyObject *index_m_has_node(indexObject *self, PyObject *args) { int ret = index_contains(self, args); if (ret < 0) return NULL; return PyBool_FromLong((long)ret); } static PyObject *index_m_rev(indexObject *self, PyObject *val) { char *node; int rev; if (node_check(val, &node) == -1) return NULL; rev = index_find_node(self, node, 20); if (rev >= -1) return PyInt_FromLong(rev); if (rev == -2) raise_revlog_error(); return NULL; } typedef uint64_t bitmask; /* * Given a disjoint set of revs, return all candidates for the * greatest common ancestor. In revset notation, this is the set * "heads(::a and ::b and ...)" */ static PyObject *find_gca_candidates(indexObject *self, const int *revs, int revcount) { const bitmask allseen = (1ull << revcount) - 1; const bitmask poison = 1ull << revcount; PyObject *gca = PyList_New(0); int i, v, interesting; int maxrev = -1; bitmask sp; bitmask *seen; if (gca == NULL) return PyErr_NoMemory(); for (i = 0; i < revcount; i++) { if (revs[i] > maxrev) maxrev = revs[i]; } seen = calloc(sizeof(*seen), maxrev + 1); if (seen == NULL) { Py_DECREF(gca); return PyErr_NoMemory(); } for (i = 0; i < revcount; i++) seen[revs[i]] = 1ull << i; interesting = revcount; for (v = maxrev; v >= 0 && interesting; v--) { bitmask sv = seen[v]; int parents[2]; if (!sv) continue; if (sv < poison) { interesting -= 1; if (sv == allseen) { PyObject *obj = PyInt_FromLong(v); if (obj == NULL) goto bail; if (PyList_Append(gca, obj) == -1) { Py_DECREF(obj); goto bail; } sv |= poison; for (i = 0; i < revcount; i++) { if (revs[i] == v) goto done; } } } if (index_get_parents(self, v, parents, maxrev) < 0) goto bail; for (i = 0; i < 2; i++) { int p = parents[i]; if (p == -1) continue; sp = seen[p]; if (sv < poison) { if (sp == 0) { seen[p] = sv; interesting++; } else if (sp != sv) seen[p] |= sv; } else { if (sp && sp < poison) interesting--; seen[p] = sv; } } } done: free(seen); return gca; bail: free(seen); Py_XDECREF(gca); return NULL; } /* * Given a disjoint set of revs, return the subset with the longest * path to the root. */ static PyObject *find_deepest(indexObject *self, PyObject *revs) { const Py_ssize_t revcount = PyList_GET_SIZE(revs); static const Py_ssize_t capacity = 24; int *depth, *interesting = NULL; int i, j, v, ninteresting; PyObject *dict = NULL, *keys = NULL; long *seen = NULL; int maxrev = -1; long final; if (revcount > capacity) { PyErr_Format(PyExc_OverflowError, "bitset size (%ld) > capacity (%ld)", (long)revcount, (long)capacity); return NULL; } for (i = 0; i < revcount; i++) { int n = (int)PyInt_AsLong(PyList_GET_ITEM(revs, i)); if (n > maxrev) maxrev = n; } depth = calloc(sizeof(*depth), maxrev + 1); if (depth == NULL) return PyErr_NoMemory(); seen = calloc(sizeof(*seen), maxrev + 1); if (seen == NULL) { PyErr_NoMemory(); goto bail; } interesting = calloc(sizeof(*interesting), ((size_t)1) << revcount); if (interesting == NULL) { PyErr_NoMemory(); goto bail; } if (PyList_Sort(revs) == -1) goto bail; for (i = 0; i < revcount; i++) { int n = (int)PyInt_AsLong(PyList_GET_ITEM(revs, i)); long b = 1l << i; depth[n] = 1; seen[n] = b; interesting[b] = 1; } /* invariant: ninteresting is the number of non-zero entries in * interesting. */ ninteresting = (int)revcount; for (v = maxrev; v >= 0 && ninteresting > 1; v--) { int dv = depth[v]; int parents[2]; long sv; if (dv == 0) continue; sv = seen[v]; if (index_get_parents(self, v, parents, maxrev) < 0) goto bail; for (i = 0; i < 2; i++) { int p = parents[i]; long sp; int dp; if (p == -1) continue; dp = depth[p]; sp = seen[p]; if (dp <= dv) { depth[p] = dv + 1; if (sp != sv) { interesting[sv] += 1; seen[p] = sv; if (sp) { interesting[sp] -= 1; if (interesting[sp] == 0) ninteresting -= 1; } } } else if (dv == dp - 1) { long nsp = sp | sv; if (nsp == sp) continue; seen[p] = nsp; interesting[sp] -= 1; if (interesting[sp] == 0) ninteresting -= 1; if (interesting[nsp] == 0) ninteresting += 1; interesting[nsp] += 1; } } interesting[sv] -= 1; if (interesting[sv] == 0) ninteresting -= 1; } final = 0; j = ninteresting; for (i = 0; i < (int)(2 << revcount) && j > 0; i++) { if (interesting[i] == 0) continue; final |= i; j -= 1; } if (final == 0) { keys = PyList_New(0); goto bail; } dict = PyDict_New(); if (dict == NULL) goto bail; for (i = 0; i < revcount; i++) { PyObject *key; if ((final & (1 << i)) == 0) continue; key = PyList_GET_ITEM(revs, i); Py_INCREF(key); Py_INCREF(Py_None); if (PyDict_SetItem(dict, key, Py_None) == -1) { Py_DECREF(key); Py_DECREF(Py_None); goto bail; } } keys = PyDict_Keys(dict); bail: free(depth); free(seen); free(interesting); Py_XDECREF(dict); return keys; } /* * Given a (possibly overlapping) set of revs, return all the * common ancestors heads: heads(::args[0] and ::a[1] and ...) */ static PyObject *index_commonancestorsheads(indexObject *self, PyObject *args) { PyObject *ret = NULL; Py_ssize_t argcount, i, len; bitmask repeat = 0; int revcount = 0; int *revs; argcount = PySequence_Length(args); revs = PyMem_Malloc(argcount * sizeof(*revs)); if (argcount > 0 && revs == NULL) return PyErr_NoMemory(); len = index_length(self); for (i = 0; i < argcount; i++) { static const int capacity = 24; PyObject *obj = PySequence_GetItem(args, i); bitmask x; long val; if (!PyInt_Check(obj)) { PyErr_SetString(PyExc_TypeError, "arguments must all be ints"); Py_DECREF(obj); goto bail; } val = PyInt_AsLong(obj); Py_DECREF(obj); if (val == -1) { ret = PyList_New(0); goto done; } if (val < 0 || val >= len) { PyErr_SetString(PyExc_IndexError, "index out of range"); goto bail; } /* this cheesy bloom filter lets us avoid some more * expensive duplicate checks in the common set-is-disjoint * case */ x = 1ull << (val & 0x3f); if (repeat & x) { int k; for (k = 0; k < revcount; k++) { if (val == revs[k]) goto duplicate; } } else repeat |= x; if (revcount >= capacity) { PyErr_Format(PyExc_OverflowError, "bitset size (%d) > capacity (%d)", revcount, capacity); goto bail; } revs[revcount++] = (int)val; duplicate:; } if (revcount == 0) { ret = PyList_New(0); goto done; } if (revcount == 1) { PyObject *obj; ret = PyList_New(1); if (ret == NULL) goto bail; obj = PyInt_FromLong(revs[0]); if (obj == NULL) goto bail; PyList_SET_ITEM(ret, 0, obj); goto done; } ret = find_gca_candidates(self, revs, revcount); if (ret == NULL) goto bail; done: PyMem_Free(revs); return ret; bail: PyMem_Free(revs); Py_XDECREF(ret); return NULL; } /* * Given a (possibly overlapping) set of revs, return the greatest * common ancestors: those with the longest path to the root. */ static PyObject *index_ancestors(indexObject *self, PyObject *args) { PyObject *ret; PyObject *gca = index_commonancestorsheads(self, args); if (gca == NULL) return NULL; if (PyList_GET_SIZE(gca) <= 1) { return gca; } ret = find_deepest(self, gca); Py_DECREF(gca); return ret; } /* * Invalidate any trie entries introduced by added revs. */ static void index_invalidate_added(indexObject *self, Py_ssize_t start) { Py_ssize_t i, len; len = self->length + self->new_length; i = start - self->length; if (i < 0) return; for (i = start; i < len; i++) nt_delete_node(&self->nt, index_deref(self, i) + 32); self->new_length = start - self->length; } /* * Delete a numeric range of revs, which must be at the end of the * range. */ static int index_slice_del(indexObject *self, PyObject *item) { Py_ssize_t start, stop, step, slicelength; Py_ssize_t length = index_length(self) + 1; int ret = 0; /* Argument changed from PySliceObject* to PyObject* in Python 3. */ #ifdef IS_PY3K if (PySlice_GetIndicesEx(item, length, &start, &stop, &step, &slicelength) < 0) #else if (PySlice_GetIndicesEx((PySliceObject *)item, length, &start, &stop, &step, &slicelength) < 0) #endif return -1; if (slicelength <= 0) return 0; if ((step < 0 && start < stop) || (step > 0 && start > stop)) stop = start; if (step < 0) { stop = start + 1; start = stop + step * (slicelength - 1) - 1; step = -step; } if (step != 1) { PyErr_SetString(PyExc_ValueError, "revlog index delete requires step size of 1"); return -1; } if (stop != length - 1) { PyErr_SetString(PyExc_IndexError, "revlog index deletion indices are invalid"); return -1; } if (start < self->length) { if (self->ntinitialized) { Py_ssize_t i; for (i = start; i < self->length; i++) { const char *node = index_node_existing(self, i); if (node == NULL) return -1; nt_delete_node(&self->nt, node); } if (self->new_length) index_invalidate_added(self, self->length); if (self->ntrev > start) self->ntrev = (int)start; } else if (self->new_length) { self->new_length = 0; } self->length = start; goto done; } if (self->ntinitialized) { index_invalidate_added(self, start); if (self->ntrev > start) self->ntrev = (int)start; } else { self->new_length = start - self->length; } done: Py_CLEAR(self->headrevs); return ret; } /* * Supported ops: * * slice deletion * string assignment (extend node->rev mapping) * string deletion (shrink node->rev mapping) */ static int index_assign_subscript(indexObject *self, PyObject *item, PyObject *value) { char *node; long rev; if (PySlice_Check(item) && value == NULL) return index_slice_del(self, item); if (node_check(item, &node) == -1) return -1; if (value == NULL) return self->ntinitialized ? nt_delete_node(&self->nt, node) : 0; rev = PyInt_AsLong(value); if (rev > INT_MAX || rev < 0) { if (!PyErr_Occurred()) PyErr_SetString(PyExc_ValueError, "rev out of range"); return -1; } if (index_init_nt(self) == -1) return -1; return nt_insert(&self->nt, node, (int)rev); } /* * Find all RevlogNG entries in an index that has inline data. Update * the optional "offsets" table with those entries. */ static Py_ssize_t inline_scan(indexObject *self, const char **offsets) { const char *data = (const char *)self->buf.buf; Py_ssize_t pos = 0; Py_ssize_t end = self->buf.len; long incr = v1_hdrsize; Py_ssize_t len = 0; while (pos + v1_hdrsize <= end && pos >= 0) { uint32_t comp_len; /* 3rd element of header is length of compressed inline data */ comp_len = getbe32(data + pos + 8); incr = v1_hdrsize + comp_len; if (offsets) offsets[len] = data + pos; len++; pos += incr; } if (pos != end) { if (!PyErr_Occurred()) PyErr_SetString(PyExc_ValueError, "corrupt index file"); return -1; } return len; } static int index_init(indexObject *self, PyObject *args) { PyObject *data_obj, *inlined_obj; Py_ssize_t size; /* Initialize before argument-checking to avoid index_dealloc() crash. */ self->added = NULL; self->new_length = 0; self->added_length = 0; self->data = NULL; memset(&self->buf, 0, sizeof(self->buf)); self->headrevs = NULL; self->filteredrevs = Py_None; Py_INCREF(Py_None); self->ntinitialized = 0; self->offsets = NULL; if (!PyArg_ParseTuple(args, "OO", &data_obj, &inlined_obj)) return -1; if (!PyObject_CheckBuffer(data_obj)) { PyErr_SetString(PyExc_TypeError, "data does not support buffer interface"); return -1; } if (PyObject_GetBuffer(data_obj, &self->buf, PyBUF_SIMPLE) == -1) return -1; size = self->buf.len; self->inlined = inlined_obj && PyObject_IsTrue(inlined_obj); self->data = data_obj; self->ntlookups = self->ntmisses = 0; self->ntrev = -1; Py_INCREF(self->data); if (self->inlined) { Py_ssize_t len = inline_scan(self, NULL); if (len == -1) goto bail; self->length = len; } else { if (size % v1_hdrsize) { PyErr_SetString(PyExc_ValueError, "corrupt index file"); goto bail; } self->length = size / v1_hdrsize; } return 0; bail: return -1; } static PyObject *index_nodemap(indexObject *self) { Py_INCREF(self); return (PyObject *)self; } static void _index_clearcaches(indexObject *self) { if (self->offsets) { PyMem_Free((void *)self->offsets); self->offsets = NULL; } if (self->ntinitialized) { nt_dealloc(&self->nt); } self->ntinitialized = 0; Py_CLEAR(self->headrevs); } static PyObject *index_clearcaches(indexObject *self) { _index_clearcaches(self); self->ntrev = -1; self->ntlookups = self->ntmisses = 0; Py_RETURN_NONE; } static void index_dealloc(indexObject *self) { _index_clearcaches(self); Py_XDECREF(self->filteredrevs); if (self->buf.buf) { PyBuffer_Release(&self->buf); memset(&self->buf, 0, sizeof(self->buf)); } Py_XDECREF(self->data); PyMem_Free(self->added); PyObject_Del(self); } static PySequenceMethods index_sequence_methods = { (lenfunc)index_length, /* sq_length */ 0, /* sq_concat */ 0, /* sq_repeat */ (ssizeargfunc)index_get, /* sq_item */ 0, /* sq_slice */ 0, /* sq_ass_item */ 0, /* sq_ass_slice */ (objobjproc)index_contains, /* sq_contains */ }; static PyMappingMethods index_mapping_methods = { (lenfunc)index_length, /* mp_length */ (binaryfunc)index_getitem, /* mp_subscript */ (objobjargproc)index_assign_subscript, /* mp_ass_subscript */ }; static PyMethodDef index_methods[] = { {"ancestors", (PyCFunction)index_ancestors, METH_VARARGS, "return the gca set of the given revs"}, {"commonancestorsheads", (PyCFunction)index_commonancestorsheads, METH_VARARGS, "return the heads of the common ancestors of the given revs"}, {"clearcaches", (PyCFunction)index_clearcaches, METH_NOARGS, "clear the index caches"}, {"get", (PyCFunction)index_m_get, METH_VARARGS, "get an index entry"}, {"get_rev", (PyCFunction)index_m_get, METH_VARARGS, "return `rev` associated with a node or None"}, {"has_node", (PyCFunction)index_m_has_node, METH_O, "return True if the node exist in the index"}, {"rev", (PyCFunction)index_m_rev, METH_O, "return `rev` associated with a node or raise RevlogError"}, {"computephasesmapsets", (PyCFunction)compute_phases_map_sets, METH_VARARGS, "compute phases"}, {"reachableroots2", (PyCFunction)reachableroots2, METH_VARARGS, "reachableroots"}, {"headrevs", (PyCFunction)index_headrevs, METH_VARARGS, "get head revisions"}, /* Can do filtering since 3.2 */ {"headrevsfiltered", (PyCFunction)index_headrevs, METH_VARARGS, "get filtered head revisions"}, /* Can always do filtering */ {"issnapshot", (PyCFunction)index_issnapshot, METH_O, "True if the object is a snapshot"}, {"findsnapshots", (PyCFunction)index_findsnapshots, METH_VARARGS, "Gather snapshot data in a cache dict"}, {"deltachain", (PyCFunction)index_deltachain, METH_VARARGS, "determine revisions with deltas to reconstruct fulltext"}, {"slicechunktodensity", (PyCFunction)index_slicechunktodensity, METH_VARARGS, "determine revisions with deltas to reconstruct fulltext"}, {"append", (PyCFunction)index_append, METH_O, "append an index entry"}, {"partialmatch", (PyCFunction)index_partialmatch, METH_VARARGS, "match a potentially ambiguous node ID"}, {"shortest", (PyCFunction)index_shortest, METH_VARARGS, "find length of shortest hex nodeid of a binary ID"}, {"stats", (PyCFunction)index_stats, METH_NOARGS, "stats for the index"}, {NULL} /* Sentinel */ }; static PyGetSetDef index_getset[] = { {"nodemap", (getter)index_nodemap, NULL, "nodemap", NULL}, {NULL} /* Sentinel */ }; PyTypeObject HgRevlogIndex_Type = { PyVarObject_HEAD_INIT(NULL, 0) /* header */ "parsers.index", /* tp_name */ sizeof(indexObject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)index_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ 0, /* tp_repr */ 0, /* tp_as_number */ &index_sequence_methods, /* tp_as_sequence */ &index_mapping_methods, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ "revlog index", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ index_methods, /* tp_methods */ 0, /* tp_members */ index_getset, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)index_init, /* tp_init */ 0, /* tp_alloc */ }; /* * returns a tuple of the form (index, index, cache) with elements as * follows: * * index: an index object that lazily parses RevlogNG records * cache: if data is inlined, a tuple (0, index_file_content), else None * index_file_content could be a string, or a buffer * * added complications are for backwards compatibility */ PyObject *parse_index2(PyObject *self, PyObject *args) { PyObject *cache = NULL; indexObject *idx; int ret; idx = PyObject_New(indexObject, &HgRevlogIndex_Type); if (idx == NULL) goto bail; ret = index_init(idx, args); if (ret == -1) goto bail; if (idx->inlined) { cache = Py_BuildValue("iO", 0, idx->data); if (cache == NULL) goto bail; } else { cache = Py_None; Py_INCREF(cache); } return Py_BuildValue("NN", idx, cache); bail: Py_XDECREF(idx); Py_XDECREF(cache); return NULL; } static Revlog_CAPI CAPI = { /* increment the abi_version field upon each change in the Revlog_CAPI struct or in the ABI of the listed functions */ 2, index_length, index_node, HgRevlogIndex_GetParents, }; void revlog_module_init(PyObject *mod) { PyObject *caps = NULL; HgRevlogIndex_Type.tp_new = PyType_GenericNew; if (PyType_Ready(&HgRevlogIndex_Type) < 0) return; Py_INCREF(&HgRevlogIndex_Type); PyModule_AddObject(mod, "index", (PyObject *)&HgRevlogIndex_Type); nodetreeType.tp_new = PyType_GenericNew; if (PyType_Ready(&nodetreeType) < 0) return; Py_INCREF(&nodetreeType); PyModule_AddObject(mod, "nodetree", (PyObject *)&nodetreeType); if (!nullentry) { nullentry = Py_BuildValue(PY23("iiiiiiis#", "iiiiiiiy#"), 0, 0, 0, -1, -1, -1, -1, nullid, (Py_ssize_t)20); } if (nullentry) PyObject_GC_UnTrack(nullentry); caps = PyCapsule_New(&CAPI, "mercurial.cext.parsers.revlog_CAPI", NULL); if (caps != NULL) PyModule_AddObject(mod, "revlog_CAPI", caps); }