Mercurial > hg
view mercurial/worker.py @ 26423:c93f91c1db1c
strip: use bundle2 + cg2 by default when repository use general delta
The bundle10 format (plain changegroup-01) does not support general delta and
result into expensive delta re-computation when stripping. If the repository is
general delta, we store backups as bundle20 containing a changegroup-02 payload.
We remove the experimental feature related to strip backup bundle format because
this achieve the same goal in a leaner way. Removing the experimental option is
fine, that is why it experimental in the first place.
Compression of these bundles are coming in later changesets.
author | Pierre-Yves David <pierre-yves.david@fb.com> |
---|---|
date | Tue, 29 Sep 2015 13:16:51 -0700 |
parents | d29859cfcfc2 |
children | c0501c26b05c |
line wrap: on
line source
# worker.py - master-slave parallelism support # # Copyright 2013 Facebook, Inc. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import errno import multiprocessing import os import signal import sys import threading from .i18n import _ from . import util def countcpus(): '''try to count the number of CPUs on the system''' try: return multiprocessing.cpu_count() except NotImplementedError: return 1 def _numworkers(ui): s = ui.config('worker', 'numcpus') if s: try: n = int(s) if n >= 1: return n except ValueError: raise util.Abort(_('number of cpus must be an integer')) return min(max(countcpus(), 4), 32) if os.name == 'posix': _startupcost = 0.01 else: _startupcost = 1e30 def worthwhile(ui, costperop, nops): '''try to determine whether the benefit of multiple processes can outweigh the cost of starting them''' linear = costperop * nops workers = _numworkers(ui) benefit = linear - (_startupcost * workers + linear / workers) return benefit >= 0.15 def worker(ui, costperarg, func, staticargs, args): '''run a function, possibly in parallel in multiple worker processes. returns a progress iterator costperarg - cost of a single task func - function to run staticargs - arguments to pass to every invocation of the function args - arguments to split into chunks, to pass to individual workers ''' if worthwhile(ui, costperarg, len(args)): return _platformworker(ui, func, staticargs, args) return func(*staticargs + (args,)) def _posixworker(ui, func, staticargs, args): rfd, wfd = os.pipe() workers = _numworkers(ui) oldhandler = signal.getsignal(signal.SIGINT) signal.signal(signal.SIGINT, signal.SIG_IGN) pids, problem = [], [0] for pargs in partition(args, workers): pid = os.fork() if pid == 0: signal.signal(signal.SIGINT, oldhandler) try: os.close(rfd) for i, item in func(*(staticargs + (pargs,))): os.write(wfd, '%d %s\n' % (i, item)) os._exit(0) except KeyboardInterrupt: os._exit(255) # other exceptions are allowed to propagate, we rely # on lock.py's pid checks to avoid release callbacks pids.append(pid) pids.reverse() os.close(wfd) fp = os.fdopen(rfd, 'rb', 0) def killworkers(): # if one worker bails, there's no good reason to wait for the rest for p in pids: try: os.kill(p, signal.SIGTERM) except OSError as err: if err.errno != errno.ESRCH: raise def waitforworkers(): for _pid in pids: st = _exitstatus(os.wait()[1]) if st and not problem[0]: problem[0] = st killworkers() t = threading.Thread(target=waitforworkers) t.start() def cleanup(): signal.signal(signal.SIGINT, oldhandler) t.join() status = problem[0] if status: if status < 0: os.kill(os.getpid(), -status) sys.exit(status) try: for line in fp: l = line.split(' ', 1) yield int(l[0]), l[1][:-1] except: # re-raises killworkers() cleanup() raise cleanup() def _posixexitstatus(code): '''convert a posix exit status into the same form returned by os.spawnv returns None if the process was stopped instead of exiting''' if os.WIFEXITED(code): return os.WEXITSTATUS(code) elif os.WIFSIGNALED(code): return -os.WTERMSIG(code) if os.name != 'nt': _platformworker = _posixworker _exitstatus = _posixexitstatus def partition(lst, nslices): '''partition a list into N slices of equal size''' n = len(lst) chunk, slop = n / nslices, n % nslices end = 0 for i in xrange(nslices): start = end end = start + chunk if slop: end += 1 slop -= 1 yield lst[start:end]