view rust/hg-core/src/dirstate_tree/path_with_basename.rs @ 47100:caa3031c9ed5

dirstate-tree: Add tree traversal/iteration Like Python’s, Rust’s iterators are "external" in that they are driven by a caller who calls a `next` method. This is as opposed to "internal" iterators who drive themselves and call a callback for each item. Writing an internal iterator traversing a tree is easy with recursion, but internal iterators cannot rely on the call stack in that way, they must save in an explicit object all state that they need to be preserved across two `next` calls. This algorithm uses a `Vec` as a stack that contains what would be local variables on the call stack if we could use recursion. Differential Revision: https://phab.mercurial-scm.org/D10370
author Simon Sapin <simon.sapin@octobus.net>
date Tue, 06 Apr 2021 21:07:12 +0200
parents 3c11c24b82b6
children 15395fd8ab28
line wrap: on
line source

use crate::utils::hg_path::HgPath;
use std::borrow::Borrow;

/// Wraps `HgPath` or `HgPathBuf` to make it behave "as" its last path
/// component, a.k.a. its base name (as in Python’s `os.path.basename`), but
/// also allow recovering the full path.
///
/// "Behaving as" means that equality and comparison consider only the base
/// name, and `std::borrow::Borrow` is implemented to return only the base
/// name. This allows using the base name as a map key while still being able
/// to recover the full path, in a single memory allocation.
#[derive(Debug)]
pub struct WithBasename<T> {
    full_path: T,

    /// The position after the last slash separator in `full_path`, or `0`
    /// if there is no slash.
    base_name_start: usize,
}

impl<T> WithBasename<T> {
    pub fn full_path(&self) -> &T {
        &self.full_path
    }
}

impl<T: AsRef<HgPath>> WithBasename<T> {
    pub fn new(full_path: T) -> Self {
        let base_name_start = if let Some(last_slash_position) = full_path
            .as_ref()
            .as_bytes()
            .iter()
            .rposition(|&byte| byte == b'/')
        {
            last_slash_position + 1
        } else {
            0
        };
        Self {
            base_name_start,
            full_path,
        }
    }

    pub fn base_name(&self) -> &HgPath {
        HgPath::new(
            &self.full_path.as_ref().as_bytes()[self.base_name_start..],
        )
    }
}

impl<T: AsRef<HgPath>> Borrow<HgPath> for WithBasename<T> {
    fn borrow(&self) -> &HgPath {
        self.base_name()
    }
}

impl<T: AsRef<HgPath> + PartialEq> PartialEq for WithBasename<T> {
    fn eq(&self, other: &Self) -> bool {
        self.base_name() == other.base_name()
    }
}

impl<T: AsRef<HgPath> + Eq> Eq for WithBasename<T> {}

impl<T: AsRef<HgPath> + PartialOrd> PartialOrd for WithBasename<T> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.base_name().partial_cmp(other.base_name())
    }
}

impl<T: AsRef<HgPath> + Ord> Ord for WithBasename<T> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.base_name().cmp(other.base_name())
    }
}

impl<T: ?Sized + ToOwned> WithBasename<&'_ T> {
    pub fn to_owned(&self) -> WithBasename<T::Owned> {
        WithBasename {
            full_path: self.full_path.to_owned(),
            base_name_start: self.base_name_start,
        }
    }
}

impl<'a> WithBasename<&'a HgPath> {
    /// Returns an iterator of `WithBasename<&HgPath>` for the ancestor
    /// directory paths of the given `path`, as well as `path` itself.
    ///
    /// For example, the full paths of inclusive ancestors of "a/b/c" are "a",
    /// "a/b", and "a/b/c" in that order.
    pub fn inclusive_ancestors_of(
        path: &'a HgPath,
    ) -> impl Iterator<Item = WithBasename<&'a HgPath>> {
        let mut slash_positions =
            path.as_bytes().iter().enumerate().filter_map(|(i, &byte)| {
                if byte == b'/' {
                    Some(i)
                } else {
                    None
                }
            });
        let mut opt_next_component_start = Some(0);
        std::iter::from_fn(move || {
            opt_next_component_start.take().map(|next_component_start| {
                if let Some(slash_pos) = slash_positions.next() {
                    opt_next_component_start = Some(slash_pos + 1);
                    Self {
                        full_path: HgPath::new(&path.as_bytes()[..slash_pos]),
                        base_name_start: next_component_start,
                    }
                } else {
                    // Not setting `opt_next_component_start` here: there will
                    // be no iteration after this one because `.take()` set it
                    // to `None`.
                    Self {
                        full_path: path,
                        base_name_start: next_component_start,
                    }
                }
            })
        })
    }
}

#[test]
fn test() {
    let a = WithBasename::new(HgPath::new("a").to_owned());
    assert_eq!(&**a.full_path(), HgPath::new(b"a"));
    assert_eq!(a.base_name(), HgPath::new(b"a"));

    let cba = WithBasename::new(HgPath::new("c/b/a").to_owned());
    assert_eq!(&**cba.full_path(), HgPath::new(b"c/b/a"));
    assert_eq!(cba.base_name(), HgPath::new(b"a"));

    assert_eq!(a, cba);
    let borrowed: &HgPath = cba.borrow();
    assert_eq!(borrowed, HgPath::new("a"));
}

#[test]
fn test_inclusive_ancestors() {
    let mut iter = WithBasename::inclusive_ancestors_of(HgPath::new("a/bb/c"));

    let next = iter.next().unwrap();
    assert_eq!(*next.full_path(), HgPath::new("a"));
    assert_eq!(next.base_name(), HgPath::new("a"));

    let next = iter.next().unwrap();
    assert_eq!(*next.full_path(), HgPath::new("a/bb"));
    assert_eq!(next.base_name(), HgPath::new("bb"));

    let next = iter.next().unwrap();
    assert_eq!(*next.full_path(), HgPath::new("a/bb/c"));
    assert_eq!(next.base_name(), HgPath::new("c"));

    assert!(iter.next().is_none());
}