mercurial/peer.py
author Augie Fackler <augie@google.com>
Wed, 05 Aug 2015 14:51:34 -0400
changeset 25912 cbbdd085c991
parent 17273 4ed6b3a24661
child 25965 e6b56b2c1f26
permissions -rw-r--r--
batching: migrate basic noop batching into peer.peer "Real" batching only makes sense for wirepeers, but it greatly simplifies the clients of peer instances if they can be ignorant to actual batching capabilities of that peer. By moving the not-really-batched batching code into peer.peer, all peer instances now work with the batching API, thus simplifying users. This leaves a couple of name forwards in wirepeer.py. Originally I had planned to clean those up, but it kind of unclarifies other bits of code that want to use batching, so I think it makes sense for the names to stay exposed by wireproto. Specifically, almost nothing is currently aware of peer (see largefiles.proto for an example), so making them be aware of the peer module *and* the wireproto module seems like some abstraction leakage. I *think* the right long-term fix would actually be to make wireproto an implementation detail that clients wouldn't need to know about, but I don't really know what that would entail at the moment. As far as I'm aware, no clients of batching in third-party extensions will need updating, which is nice icing.

# peer.py - repository base classes for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
# Copyright 2006 Vadim Gelfer <vadim.gelfer@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from i18n import _
import error
import util

# abstract batching support

class future(object):
    '''placeholder for a value to be set later'''
    def set(self, value):
        if util.safehasattr(self, 'value'):
            raise error.RepoError("future is already set")
        self.value = value

class batcher(object):
    '''base class for batches of commands submittable in a single request

    All methods invoked on instances of this class are simply queued and
    return a a future for the result. Once you call submit(), all the queued
    calls are performed and the results set in their respective futures.
    '''
    def __init__(self):
        self.calls = []
    def __getattr__(self, name):
        def call(*args, **opts):
            resref = future()
            self.calls.append((name, args, opts, resref,))
            return resref
        return call
    def submit(self):
        pass

class localbatch(batcher):
    '''performs the queued calls directly'''
    def __init__(self, local):
        batcher.__init__(self)
        self.local = local
    def submit(self):
        for name, args, opts, resref in self.calls:
            resref.set(getattr(self.local, name)(*args, **opts))

def batchable(f):
    '''annotation for batchable methods

    Such methods must implement a coroutine as follows:

    @batchable
    def sample(self, one, two=None):
        # Handle locally computable results first:
        if not one:
            yield "a local result", None
        # Build list of encoded arguments suitable for your wire protocol:
        encargs = [('one', encode(one),), ('two', encode(two),)]
        # Create future for injection of encoded result:
        encresref = future()
        # Return encoded arguments and future:
        yield encargs, encresref
        # Assuming the future to be filled with the result from the batched
        # request now. Decode it:
        yield decode(encresref.value)

    The decorator returns a function which wraps this coroutine as a plain
    method, but adds the original method as an attribute called "batchable",
    which is used by remotebatch to split the call into separate encoding and
    decoding phases.
    '''
    def plain(*args, **opts):
        batchable = f(*args, **opts)
        encargsorres, encresref = batchable.next()
        if not encresref:
            return encargsorres # a local result in this case
        self = args[0]
        encresref.set(self._submitone(f.func_name, encargsorres))
        return batchable.next()
    setattr(plain, 'batchable', f)
    return plain

class peerrepository(object):

    def batch(self):
        return localbatch(self)

    def capable(self, name):
        '''tell whether repo supports named capability.
        return False if not supported.
        if boolean capability, return True.
        if string capability, return string.'''
        caps = self._capabilities()
        if name in caps:
            return True
        name_eq = name + '='
        for cap in caps:
            if cap.startswith(name_eq):
                return cap[len(name_eq):]
        return False

    def requirecap(self, name, purpose):
        '''raise an exception if the given capability is not present'''
        if not self.capable(name):
            raise error.CapabilityError(
                _('cannot %s; remote repository does not '
                  'support the %r capability') % (purpose, name))

    def local(self):
        '''return peer as a localrepo, or None'''
        return None

    def peer(self):
        return self

    def canpush(self):
        return True

    def close(self):
        pass