manifestv2: add (unused) config option
With tree manifests, hashes will change anyway, so now is a good time
to also take up the old plans of a new manifest format. While there
should be little or no reason to use tree manifests with the current
manifest format (v1) once the new format (v2) is supported, we'll try
to keep the two dimensions (flat/tree and v1/v2) separate.
In preparation for adding a the new format, let's add configuration
for it and propagate that configuration to the manifest revlog
subclass. The new configuration ("experimental.manifestv2") says in
what format to write the manifest data. We may later add other
configuration to choose how to hash it, either keeping the v1 hash for
BC or hashing the v2 content.
See http://mercurial.selenic.com/wiki/ManifestV2Plan for more details.
# worker.py - master-slave parallelism support
#
# Copyright 2013 Facebook, Inc.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from i18n import _
import errno, os, signal, sys, threading
import util
def countcpus():
'''try to count the number of CPUs on the system'''
# posix
try:
n = int(os.sysconf('SC_NPROCESSORS_ONLN'))
if n > 0:
return n
except (AttributeError, ValueError):
pass
# windows
try:
n = int(os.environ['NUMBER_OF_PROCESSORS'])
if n > 0:
return n
except (KeyError, ValueError):
pass
return 1
def _numworkers(ui):
s = ui.config('worker', 'numcpus')
if s:
try:
n = int(s)
if n >= 1:
return n
except ValueError:
raise util.Abort(_('number of cpus must be an integer'))
return min(max(countcpus(), 4), 32)
if os.name == 'posix':
_startupcost = 0.01
else:
_startupcost = 1e30
def worthwhile(ui, costperop, nops):
'''try to determine whether the benefit of multiple processes can
outweigh the cost of starting them'''
linear = costperop * nops
workers = _numworkers(ui)
benefit = linear - (_startupcost * workers + linear / workers)
return benefit >= 0.15
def worker(ui, costperarg, func, staticargs, args):
'''run a function, possibly in parallel in multiple worker
processes.
returns a progress iterator
costperarg - cost of a single task
func - function to run
staticargs - arguments to pass to every invocation of the function
args - arguments to split into chunks, to pass to individual
workers
'''
if worthwhile(ui, costperarg, len(args)):
return _platformworker(ui, func, staticargs, args)
return func(*staticargs + (args,))
def _posixworker(ui, func, staticargs, args):
rfd, wfd = os.pipe()
workers = _numworkers(ui)
oldhandler = signal.getsignal(signal.SIGINT)
signal.signal(signal.SIGINT, signal.SIG_IGN)
pids, problem = [], [0]
for pargs in partition(args, workers):
pid = os.fork()
if pid == 0:
signal.signal(signal.SIGINT, oldhandler)
try:
os.close(rfd)
for i, item in func(*(staticargs + (pargs,))):
os.write(wfd, '%d %s\n' % (i, item))
os._exit(0)
except KeyboardInterrupt:
os._exit(255)
# other exceptions are allowed to propagate, we rely
# on lock.py's pid checks to avoid release callbacks
pids.append(pid)
pids.reverse()
os.close(wfd)
fp = os.fdopen(rfd, 'rb', 0)
def killworkers():
# if one worker bails, there's no good reason to wait for the rest
for p in pids:
try:
os.kill(p, signal.SIGTERM)
except OSError, err:
if err.errno != errno.ESRCH:
raise
def waitforworkers():
for _pid in pids:
st = _exitstatus(os.wait()[1])
if st and not problem[0]:
problem[0] = st
killworkers()
t = threading.Thread(target=waitforworkers)
t.start()
def cleanup():
signal.signal(signal.SIGINT, oldhandler)
t.join()
status = problem[0]
if status:
if status < 0:
os.kill(os.getpid(), -status)
sys.exit(status)
try:
for line in fp:
l = line.split(' ', 1)
yield int(l[0]), l[1][:-1]
except: # re-raises
killworkers()
cleanup()
raise
cleanup()
def _posixexitstatus(code):
'''convert a posix exit status into the same form returned by
os.spawnv
returns None if the process was stopped instead of exiting'''
if os.WIFEXITED(code):
return os.WEXITSTATUS(code)
elif os.WIFSIGNALED(code):
return -os.WTERMSIG(code)
if os.name != 'nt':
_platformworker = _posixworker
_exitstatus = _posixexitstatus
def partition(lst, nslices):
'''partition a list into N slices of equal size'''
n = len(lst)
chunk, slop = n / nslices, n % nslices
end = 0
for i in xrange(nslices):
start = end
end = start + chunk
if slop:
end += 1
slop -= 1
yield lst[start:end]