Mercurial > hg
view contrib/python-zstandard/zstd/compress/zstd_opt.c @ 46606:ced66295ea90
narrow: remove assertion about working copy being clean
The user can always modify the working copy, including while they're
running `hg tracked --remove-include <path>`. Nothing really bad
happens when they do that, and we already have code for printing a
nice warning, so we can safely remove the assertion we had.
Differential Revision: https://phab.mercurial-scm.org/D10063
author | Martin von Zweigbergk <martinvonz@google.com> |
---|---|
date | Tue, 23 Feb 2021 22:58:30 -0800 |
parents | de7838053207 |
children |
line wrap: on
line source
/* * Copyright (c) 2016-present, Przemyslaw Skibinski, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ #include "zstd_compress_internal.h" #include "hist.h" #include "zstd_opt.h" #define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */ #define ZSTD_FREQ_DIV 4 /* log factor when using previous stats to init next stats */ #define ZSTD_MAX_PRICE (1<<30) #define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */ /*-************************************* * Price functions for optimal parser ***************************************/ #if 0 /* approximation at bit level */ # define BITCOST_ACCURACY 0 # define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) # define WEIGHT(stat) ((void)opt, ZSTD_bitWeight(stat)) #elif 0 /* fractional bit accuracy */ # define BITCOST_ACCURACY 8 # define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) # define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat)) #else /* opt==approx, ultra==accurate */ # define BITCOST_ACCURACY 8 # define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) # define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat)) #endif MEM_STATIC U32 ZSTD_bitWeight(U32 stat) { return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER); } MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat) { U32 const stat = rawStat + 1; U32 const hb = ZSTD_highbit32(stat); U32 const BWeight = hb * BITCOST_MULTIPLIER; U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb; U32 const weight = BWeight + FWeight; assert(hb + BITCOST_ACCURACY < 31); return weight; } #if (DEBUGLEVEL>=2) /* debugging function, * @return price in bytes as fractional value * for debug messages only */ MEM_STATIC double ZSTD_fCost(U32 price) { return (double)price / (BITCOST_MULTIPLIER*8); } #endif static int ZSTD_compressedLiterals(optState_t const* const optPtr) { return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed; } static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel) { if (ZSTD_compressedLiterals(optPtr)) optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel); optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel); optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel); optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel); } /* ZSTD_downscaleStat() : * reduce all elements in table by a factor 2^(ZSTD_FREQ_DIV+malus) * return the resulting sum of elements */ static U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex, int malus) { U32 s, sum=0; DEBUGLOG(5, "ZSTD_downscaleStat (nbElts=%u)", (unsigned)lastEltIndex+1); assert(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31); for (s=0; s<lastEltIndex+1; s++) { table[s] = 1 + (table[s] >> (ZSTD_FREQ_DIV+malus)); sum += table[s]; } return sum; } /* ZSTD_rescaleFreqs() : * if first block (detected by optPtr->litLengthSum == 0) : init statistics * take hints from dictionary if there is one * or init from zero, using src for literals stats, or flat 1 for match symbols * otherwise downscale existing stats, to be used as seed for next block. */ static void ZSTD_rescaleFreqs(optState_t* const optPtr, const BYTE* const src, size_t const srcSize, int const optLevel) { int const compressedLiterals = ZSTD_compressedLiterals(optPtr); DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize); optPtr->priceType = zop_dynamic; if (optPtr->litLengthSum == 0) { /* first block : init */ if (srcSize <= ZSTD_PREDEF_THRESHOLD) { /* heuristic */ DEBUGLOG(5, "(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef"); optPtr->priceType = zop_predef; } assert(optPtr->symbolCosts != NULL); if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) { /* huffman table presumed generated by dictionary */ optPtr->priceType = zop_dynamic; if (compressedLiterals) { unsigned lit; assert(optPtr->litFreq != NULL); optPtr->litSum = 0; for (lit=0; lit<=MaxLit; lit++) { U32 const scaleLog = 11; /* scale to 2K */ U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit); assert(bitCost <= scaleLog); optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; optPtr->litSum += optPtr->litFreq[lit]; } } { unsigned ll; FSE_CState_t llstate; FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable); optPtr->litLengthSum = 0; for (ll=0; ll<=MaxLL; ll++) { U32 const scaleLog = 10; /* scale to 1K */ U32 const bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll); assert(bitCost < scaleLog); optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; optPtr->litLengthSum += optPtr->litLengthFreq[ll]; } } { unsigned ml; FSE_CState_t mlstate; FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable); optPtr->matchLengthSum = 0; for (ml=0; ml<=MaxML; ml++) { U32 const scaleLog = 10; U32 const bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml); assert(bitCost < scaleLog); optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; optPtr->matchLengthSum += optPtr->matchLengthFreq[ml]; } } { unsigned of; FSE_CState_t ofstate; FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable); optPtr->offCodeSum = 0; for (of=0; of<=MaxOff; of++) { U32 const scaleLog = 10; U32 const bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of); assert(bitCost < scaleLog); optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; optPtr->offCodeSum += optPtr->offCodeFreq[of]; } } } else { /* not a dictionary */ assert(optPtr->litFreq != NULL); if (compressedLiterals) { unsigned lit = MaxLit; HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */ optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1); } { unsigned ll; for (ll=0; ll<=MaxLL; ll++) optPtr->litLengthFreq[ll] = 1; } optPtr->litLengthSum = MaxLL+1; { unsigned ml; for (ml=0; ml<=MaxML; ml++) optPtr->matchLengthFreq[ml] = 1; } optPtr->matchLengthSum = MaxML+1; { unsigned of; for (of=0; of<=MaxOff; of++) optPtr->offCodeFreq[of] = 1; } optPtr->offCodeSum = MaxOff+1; } } else { /* new block : re-use previous statistics, scaled down */ if (compressedLiterals) optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1); optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0); optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0); optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0); } ZSTD_setBasePrices(optPtr, optLevel); } /* ZSTD_rawLiteralsCost() : * price of literals (only) in specified segment (which length can be 0). * does not include price of literalLength symbol */ static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength, const optState_t* const optPtr, int optLevel) { if (litLength == 0) return 0; if (!ZSTD_compressedLiterals(optPtr)) return (litLength << 3) * BITCOST_MULTIPLIER; /* Uncompressed - 8 bytes per literal. */ if (optPtr->priceType == zop_predef) return (litLength*6) * BITCOST_MULTIPLIER; /* 6 bit per literal - no statistic used */ /* dynamic statistics */ { U32 price = litLength * optPtr->litSumBasePrice; U32 u; for (u=0; u < litLength; u++) { assert(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice); /* literal cost should never be negative */ price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel); } return price; } } /* ZSTD_litLengthPrice() : * cost of literalLength symbol */ static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel) { if (optPtr->priceType == zop_predef) return WEIGHT(litLength, optLevel); /* dynamic statistics */ { U32 const llCode = ZSTD_LLcode(litLength); return (LL_bits[llCode] * BITCOST_MULTIPLIER) + optPtr->litLengthSumBasePrice - WEIGHT(optPtr->litLengthFreq[llCode], optLevel); } } /* ZSTD_litLengthContribution() : * @return ( cost(litlength) - cost(0) ) * this value can then be added to rawLiteralsCost() * to provide a cost which is directly comparable to a match ending at same position */ static int ZSTD_litLengthContribution(U32 const litLength, const optState_t* const optPtr, int optLevel) { if (optPtr->priceType >= zop_predef) return (int)WEIGHT(litLength, optLevel); /* dynamic statistics */ { U32 const llCode = ZSTD_LLcode(litLength); int const contribution = (int)(LL_bits[llCode] * BITCOST_MULTIPLIER) + (int)WEIGHT(optPtr->litLengthFreq[0], optLevel) /* note: log2litLengthSum cancel out */ - (int)WEIGHT(optPtr->litLengthFreq[llCode], optLevel); #if 1 return contribution; #else return MAX(0, contribution); /* sometimes better, sometimes not ... */ #endif } } /* ZSTD_literalsContribution() : * creates a fake cost for the literals part of a sequence * which can be compared to the ending cost of a match * should a new match start at this position */ static int ZSTD_literalsContribution(const BYTE* const literals, U32 const litLength, const optState_t* const optPtr, int optLevel) { int const contribution = (int)ZSTD_rawLiteralsCost(literals, litLength, optPtr, optLevel) + ZSTD_litLengthContribution(litLength, optPtr, optLevel); return contribution; } /* ZSTD_getMatchPrice() : * Provides the cost of the match part (offset + matchLength) of a sequence * Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence. * optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) */ FORCE_INLINE_TEMPLATE U32 ZSTD_getMatchPrice(U32 const offset, U32 const matchLength, const optState_t* const optPtr, int const optLevel) { U32 price; U32 const offCode = ZSTD_highbit32(offset+1); U32 const mlBase = matchLength - MINMATCH; assert(matchLength >= MINMATCH); if (optPtr->priceType == zop_predef) /* fixed scheme, do not use statistics */ return WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER); /* dynamic statistics */ price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel)); if ((optLevel<2) /*static*/ && offCode >= 20) price += (offCode-19)*2 * BITCOST_MULTIPLIER; /* handicap for long distance offsets, favor decompression speed */ /* match Length */ { U32 const mlCode = ZSTD_MLcode(mlBase); price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel)); } price += BITCOST_MULTIPLIER / 5; /* heuristic : make matches a bit more costly to favor less sequences -> faster decompression speed */ DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price); return price; } /* ZSTD_updateStats() : * assumption : literals + litLengtn <= iend */ static void ZSTD_updateStats(optState_t* const optPtr, U32 litLength, const BYTE* literals, U32 offsetCode, U32 matchLength) { /* literals */ if (ZSTD_compressedLiterals(optPtr)) { U32 u; for (u=0; u < litLength; u++) optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD; optPtr->litSum += litLength*ZSTD_LITFREQ_ADD; } /* literal Length */ { U32 const llCode = ZSTD_LLcode(litLength); optPtr->litLengthFreq[llCode]++; optPtr->litLengthSum++; } /* match offset code (0-2=>repCode; 3+=>offset+2) */ { U32 const offCode = ZSTD_highbit32(offsetCode+1); assert(offCode <= MaxOff); optPtr->offCodeFreq[offCode]++; optPtr->offCodeSum++; } /* match Length */ { U32 const mlBase = matchLength - MINMATCH; U32 const mlCode = ZSTD_MLcode(mlBase); optPtr->matchLengthFreq[mlCode]++; optPtr->matchLengthSum++; } } /* ZSTD_readMINMATCH() : * function safe only for comparisons * assumption : memPtr must be at least 4 bytes before end of buffer */ MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length) { switch (length) { default : case 4 : return MEM_read32(memPtr); case 3 : if (MEM_isLittleEndian()) return MEM_read32(memPtr)<<8; else return MEM_read32(memPtr)>>8; } } /* Update hashTable3 up to ip (excluded) Assumption : always within prefix (i.e. not within extDict) */ static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms, U32* nextToUpdate3, const BYTE* const ip) { U32* const hashTable3 = ms->hashTable3; U32 const hashLog3 = ms->hashLog3; const BYTE* const base = ms->window.base; U32 idx = *nextToUpdate3; U32 const target = (U32)(ip - base); size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3); assert(hashLog3 > 0); while(idx < target) { hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx; idx++; } *nextToUpdate3 = target; return hashTable3[hash3]; } /*-************************************* * Binary Tree search ***************************************/ /** ZSTD_insertBt1() : add one or multiple positions to tree. * ip : assumed <= iend-8 . * @return : nb of positions added */ static U32 ZSTD_insertBt1( ZSTD_matchState_t* ms, const BYTE* const ip, const BYTE* const iend, U32 const mls, const int extDict) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32* const hashTable = ms->hashTable; U32 const hashLog = cParams->hashLog; size_t const h = ZSTD_hashPtr(ip, hashLog, mls); U32* const bt = ms->chainTable; U32 const btLog = cParams->chainLog - 1; U32 const btMask = (1 << btLog) - 1; U32 matchIndex = hashTable[h]; size_t commonLengthSmaller=0, commonLengthLarger=0; const BYTE* const base = ms->window.base; const BYTE* const dictBase = ms->window.dictBase; const U32 dictLimit = ms->window.dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const prefixStart = base + dictLimit; const BYTE* match; const U32 current = (U32)(ip-base); const U32 btLow = btMask >= current ? 0 : current - btMask; U32* smallerPtr = bt + 2*(current&btMask); U32* largerPtr = smallerPtr + 1; U32 dummy32; /* to be nullified at the end */ U32 const windowLow = ms->window.lowLimit; U32 matchEndIdx = current+8+1; size_t bestLength = 8; U32 nbCompares = 1U << cParams->searchLog; #ifdef ZSTD_C_PREDICT U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0); U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1); predictedSmall += (predictedSmall>0); predictedLarge += (predictedLarge>0); #endif /* ZSTD_C_PREDICT */ DEBUGLOG(8, "ZSTD_insertBt1 (%u)", current); assert(ip <= iend-8); /* required for h calculation */ hashTable[h] = current; /* Update Hash Table */ assert(windowLow > 0); while (nbCompares-- && (matchIndex >= windowLow)) { U32* const nextPtr = bt + 2*(matchIndex & btMask); size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ assert(matchIndex < current); #ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */ const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */ if (matchIndex == predictedSmall) { /* no need to check length, result known */ *smallerPtr = matchIndex; if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ predictedSmall = predictPtr[1] + (predictPtr[1]>0); continue; } if (matchIndex == predictedLarge) { *largerPtr = matchIndex; if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ largerPtr = nextPtr; matchIndex = nextPtr[0]; predictedLarge = predictPtr[0] + (predictPtr[0]>0); continue; } #endif if (!extDict || (matchIndex+matchLength >= dictLimit)) { assert(matchIndex+matchLength >= dictLimit); /* might be wrong if actually extDict */ match = base + matchIndex; matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); } else { match = dictBase + matchIndex; matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); if (matchIndex+matchLength >= dictLimit) match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ } if (matchLength > bestLength) { bestLength = matchLength; if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength; } if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */ } if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */ /* match is smaller than current */ *smallerPtr = matchIndex; /* update smaller idx */ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */ smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */ } else { /* match is larger than current */ *largerPtr = matchIndex; commonLengthLarger = matchLength; if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */ largerPtr = nextPtr; matchIndex = nextPtr[0]; } } *smallerPtr = *largerPtr = 0; { U32 positions = 0; if (bestLength > 384) positions = MIN(192, (U32)(bestLength - 384)); /* speed optimization */ assert(matchEndIdx > current + 8); return MAX(positions, matchEndIdx - (current + 8)); } } FORCE_INLINE_TEMPLATE void ZSTD_updateTree_internal( ZSTD_matchState_t* ms, const BYTE* const ip, const BYTE* const iend, const U32 mls, const ZSTD_dictMode_e dictMode) { const BYTE* const base = ms->window.base; U32 const target = (U32)(ip - base); U32 idx = ms->nextToUpdate; DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)", idx, target, dictMode); while(idx < target) { U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict); assert(idx < (U32)(idx + forward)); idx += forward; } assert((size_t)(ip - base) <= (size_t)(U32)(-1)); assert((size_t)(iend - base) <= (size_t)(U32)(-1)); ms->nextToUpdate = target; } void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) { ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict); } FORCE_INLINE_TEMPLATE U32 ZSTD_insertBtAndGetAllMatches ( ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */ ZSTD_matchState_t* ms, U32* nextToUpdate3, const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode, const U32 rep[ZSTD_REP_NUM], U32 const ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */ const U32 lengthToBeat, U32 const mls /* template */) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1); const BYTE* const base = ms->window.base; U32 const current = (U32)(ip-base); U32 const hashLog = cParams->hashLog; U32 const minMatch = (mls==3) ? 3 : 4; U32* const hashTable = ms->hashTable; size_t const h = ZSTD_hashPtr(ip, hashLog, mls); U32 matchIndex = hashTable[h]; U32* const bt = ms->chainTable; U32 const btLog = cParams->chainLog - 1; U32 const btMask= (1U << btLog) - 1; size_t commonLengthSmaller=0, commonLengthLarger=0; const BYTE* const dictBase = ms->window.dictBase; U32 const dictLimit = ms->window.dictLimit; const BYTE* const dictEnd = dictBase + dictLimit; const BYTE* const prefixStart = base + dictLimit; U32 const btLow = (btMask >= current) ? 0 : current - btMask; U32 const windowLow = ZSTD_getLowestMatchIndex(ms, current, cParams->windowLog); U32 const matchLow = windowLow ? windowLow : 1; U32* smallerPtr = bt + 2*(current&btMask); U32* largerPtr = bt + 2*(current&btMask) + 1; U32 matchEndIdx = current+8+1; /* farthest referenced position of any match => detects repetitive patterns */ U32 dummy32; /* to be nullified at the end */ U32 mnum = 0; U32 nbCompares = 1U << cParams->searchLog; const ZSTD_matchState_t* dms = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL; const ZSTD_compressionParameters* const dmsCParams = dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL; const BYTE* const dmsBase = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL; const BYTE* const dmsEnd = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL; U32 const dmsHighLimit = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0; U32 const dmsLowLimit = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0; U32 const dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0; U32 const dmsHashLog = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog; U32 const dmsBtLog = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog; U32 const dmsBtMask = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0; U32 const dmsBtLow = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit; size_t bestLength = lengthToBeat-1; DEBUGLOG(8, "ZSTD_insertBtAndGetAllMatches: current=%u", current); /* check repCode */ assert(ll0 <= 1); /* necessarily 1 or 0 */ { U32 const lastR = ZSTD_REP_NUM + ll0; U32 repCode; for (repCode = ll0; repCode < lastR; repCode++) { U32 const repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; U32 const repIndex = current - repOffset; U32 repLen = 0; assert(current >= dictLimit); if (repOffset-1 /* intentional overflow, discards 0 and -1 */ < current-dictLimit) { /* equivalent to `current > repIndex >= dictLimit` */ if (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch)) { repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch; } } else { /* repIndex < dictLimit || repIndex >= current */ const BYTE* const repMatch = dictMode == ZSTD_dictMatchState ? dmsBase + repIndex - dmsIndexDelta : dictBase + repIndex; assert(current >= windowLow); if ( dictMode == ZSTD_extDict && ( ((repOffset-1) /*intentional overflow*/ < current - windowLow) /* equivalent to `current > repIndex >= windowLow` */ & (((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */) && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) { repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch; } if (dictMode == ZSTD_dictMatchState && ( ((repOffset-1) /*intentional overflow*/ < current - (dmsLowLimit + dmsIndexDelta)) /* equivalent to `current > repIndex >= dmsLowLimit` */ & ((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */ && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) { repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch; } } /* save longer solution */ if (repLen > bestLength) { DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u", repCode, ll0, repOffset, repLen); bestLength = repLen; matches[mnum].off = repCode - ll0; matches[mnum].len = (U32)repLen; mnum++; if ( (repLen > sufficient_len) | (ip+repLen == iLimit) ) { /* best possible */ return mnum; } } } } /* HC3 match finder */ if ((mls == 3) /*static*/ && (bestLength < mls)) { U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip); if ((matchIndex3 >= matchLow) & (current - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) { size_t mlen; if ((dictMode == ZSTD_noDict) /*static*/ || (dictMode == ZSTD_dictMatchState) /*static*/ || (matchIndex3 >= dictLimit)) { const BYTE* const match = base + matchIndex3; mlen = ZSTD_count(ip, match, iLimit); } else { const BYTE* const match = dictBase + matchIndex3; mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart); } /* save best solution */ if (mlen >= mls /* == 3 > bestLength */) { DEBUGLOG(8, "found small match with hlog3, of length %u", (U32)mlen); bestLength = mlen; assert(current > matchIndex3); assert(mnum==0); /* no prior solution */ matches[0].off = (current - matchIndex3) + ZSTD_REP_MOVE; matches[0].len = (U32)mlen; mnum = 1; if ( (mlen > sufficient_len) | (ip+mlen == iLimit) ) { /* best possible length */ ms->nextToUpdate = current+1; /* skip insertion */ return 1; } } } /* no dictMatchState lookup: dicts don't have a populated HC3 table */ } hashTable[h] = current; /* Update Hash Table */ while (nbCompares-- && (matchIndex >= matchLow)) { U32* const nextPtr = bt + 2*(matchIndex & btMask); const BYTE* match; size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ assert(current > matchIndex); if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) { assert(matchIndex+matchLength >= dictLimit); /* ensure the condition is correct when !extDict */ match = base + matchIndex; if (matchIndex >= dictLimit) assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */ matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit); } else { match = dictBase + matchIndex; assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart); if (matchIndex+matchLength >= dictLimit) match = base + matchIndex; /* prepare for match[matchLength] read */ } if (matchLength > bestLength) { DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)", (U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE); assert(matchEndIdx > matchIndex); if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength; bestLength = matchLength; matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE; matches[mnum].len = (U32)matchLength; mnum++; if ( (matchLength > ZSTD_OPT_NUM) | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) { if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */ break; /* drop, to preserve bt consistency (miss a little bit of compression) */ } } if (match[matchLength] < ip[matchLength]) { /* match smaller than current */ *smallerPtr = matchIndex; /* update smaller idx */ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ smallerPtr = nextPtr+1; /* new candidate => larger than match, which was smaller than current */ matchIndex = nextPtr[1]; /* new matchIndex, larger than previous, closer to current */ } else { *largerPtr = matchIndex; commonLengthLarger = matchLength; if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ largerPtr = nextPtr; matchIndex = nextPtr[0]; } } *smallerPtr = *largerPtr = 0; if (dictMode == ZSTD_dictMatchState && nbCompares) { size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls); U32 dictMatchIndex = dms->hashTable[dmsH]; const U32* const dmsBt = dms->chainTable; commonLengthSmaller = commonLengthLarger = 0; while (nbCompares-- && (dictMatchIndex > dmsLowLimit)) { const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask); size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ const BYTE* match = dmsBase + dictMatchIndex; matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart); if (dictMatchIndex+matchLength >= dmsHighLimit) match = base + dictMatchIndex + dmsIndexDelta; /* to prepare for next usage of match[matchLength] */ if (matchLength > bestLength) { matchIndex = dictMatchIndex + dmsIndexDelta; DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)", (U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE); if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength; bestLength = matchLength; matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE; matches[mnum].len = (U32)matchLength; mnum++; if ( (matchLength > ZSTD_OPT_NUM) | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) { break; /* drop, to guarantee consistency (miss a little bit of compression) */ } } if (dictMatchIndex <= dmsBtLow) { break; } /* beyond tree size, stop the search */ if (match[matchLength] < ip[matchLength]) { commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ } else { /* match is larger than current */ commonLengthLarger = matchLength; dictMatchIndex = nextPtr[0]; } } } assert(matchEndIdx > current+8); ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ return mnum; } FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches ( ZSTD_match_t* matches, /* store result (match found, increasing size) in this table */ ZSTD_matchState_t* ms, U32* nextToUpdate3, const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode, const U32 rep[ZSTD_REP_NUM], U32 const ll0, U32 const lengthToBeat) { const ZSTD_compressionParameters* const cParams = &ms->cParams; U32 const matchLengthSearch = cParams->minMatch; DEBUGLOG(8, "ZSTD_BtGetAllMatches"); if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */ ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode); switch(matchLengthSearch) { case 3 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3); default : case 4 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4); case 5 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5); case 7 : case 6 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6); } } /*-******************************* * Optimal parser *********************************/ typedef struct repcodes_s { U32 rep[3]; } repcodes_t; static repcodes_t ZSTD_updateRep(U32 const rep[3], U32 const offset, U32 const ll0) { repcodes_t newReps; if (offset >= ZSTD_REP_NUM) { /* full offset */ newReps.rep[2] = rep[1]; newReps.rep[1] = rep[0]; newReps.rep[0] = offset - ZSTD_REP_MOVE; } else { /* repcode */ U32 const repCode = offset + ll0; if (repCode > 0) { /* note : if repCode==0, no change */ U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2]; newReps.rep[1] = rep[0]; newReps.rep[0] = currentOffset; } else { /* repCode == 0 */ memcpy(&newReps, rep, sizeof(newReps)); } } return newReps; } static U32 ZSTD_totalLen(ZSTD_optimal_t sol) { return sol.litlen + sol.mlen; } #if 0 /* debug */ static void listStats(const U32* table, int lastEltID) { int const nbElts = lastEltID + 1; int enb; for (enb=0; enb < nbElts; enb++) { (void)table; //RAWLOG(2, "%3i:%3i, ", enb, table[enb]); RAWLOG(2, "%4i,", table[enb]); } RAWLOG(2, " \n"); } #endif FORCE_INLINE_TEMPLATE size_t ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize, const int optLevel, const ZSTD_dictMode_e dictMode) { optState_t* const optStatePtr = &ms->opt; const BYTE* const istart = (const BYTE*)src; const BYTE* ip = istart; const BYTE* anchor = istart; const BYTE* const iend = istart + srcSize; const BYTE* const ilimit = iend - 8; const BYTE* const base = ms->window.base; const BYTE* const prefixStart = base + ms->window.dictLimit; const ZSTD_compressionParameters* const cParams = &ms->cParams; U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1); U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4; U32 nextToUpdate3 = ms->nextToUpdate; ZSTD_optimal_t* const opt = optStatePtr->priceTable; ZSTD_match_t* const matches = optStatePtr->matchTable; ZSTD_optimal_t lastSequence; /* init */ DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u", (U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate); assert(optLevel <= 2); ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel); ip += (ip==prefixStart); /* Match Loop */ while (ip < ilimit) { U32 cur, last_pos = 0; /* find first match */ { U32 const litlen = (U32)(ip - anchor); U32 const ll0 = !litlen; U32 const nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch); if (!nbMatches) { ip++; continue; } /* initialize opt[0] */ { U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; } opt[0].mlen = 0; /* means is_a_literal */ opt[0].litlen = litlen; opt[0].price = ZSTD_literalsContribution(anchor, litlen, optStatePtr, optLevel); /* large match -> immediate encoding */ { U32 const maxML = matches[nbMatches-1].len; U32 const maxOffset = matches[nbMatches-1].off; DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series", nbMatches, maxML, maxOffset, (U32)(ip-prefixStart)); if (maxML > sufficient_len) { lastSequence.litlen = litlen; lastSequence.mlen = maxML; lastSequence.off = maxOffset; DEBUGLOG(6, "large match (%u>%u), immediate encoding", maxML, sufficient_len); cur = 0; last_pos = ZSTD_totalLen(lastSequence); goto _shortestPath; } } /* set prices for first matches starting position == 0 */ { U32 const literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel); U32 pos; U32 matchNb; for (pos = 1; pos < minMatch; pos++) { opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */ } for (matchNb = 0; matchNb < nbMatches; matchNb++) { U32 const offset = matches[matchNb].off; U32 const end = matches[matchNb].len; repcodes_t const repHistory = ZSTD_updateRep(rep, offset, ll0); for ( ; pos <= end ; pos++ ) { U32 const matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel); U32 const sequencePrice = literalsPrice + matchPrice; DEBUGLOG(7, "rPos:%u => set initial price : %.2f", pos, ZSTD_fCost(sequencePrice)); opt[pos].mlen = pos; opt[pos].off = offset; opt[pos].litlen = litlen; opt[pos].price = sequencePrice; ZSTD_STATIC_ASSERT(sizeof(opt[pos].rep) == sizeof(repHistory)); memcpy(opt[pos].rep, &repHistory, sizeof(repHistory)); } } last_pos = pos-1; } } /* check further positions */ for (cur = 1; cur <= last_pos; cur++) { const BYTE* const inr = ip + cur; assert(cur < ZSTD_OPT_NUM); DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur) /* Fix current position with one literal if cheaper */ { U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1; int const price = opt[cur-1].price + ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel) + ZSTD_litLengthPrice(litlen, optStatePtr, optLevel) - ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel); assert(price < 1000000000); /* overflow check */ if (price <= opt[cur].price) { DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)", inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen, opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]); opt[cur].mlen = 0; opt[cur].off = 0; opt[cur].litlen = litlen; opt[cur].price = price; memcpy(opt[cur].rep, opt[cur-1].rep, sizeof(opt[cur].rep)); } else { DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)", inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]); } } /* last match must start at a minimum distance of 8 from oend */ if (inr > ilimit) continue; if (cur == last_pos) break; if ( (optLevel==0) /*static_test*/ && (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) { DEBUGLOG(7, "move to next rPos:%u : price is <=", cur+1); continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */ } { U32 const ll0 = (opt[cur].mlen != 0); U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0; U32 const previousPrice = opt[cur].price; U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel); U32 const nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch); U32 matchNb; if (!nbMatches) { DEBUGLOG(7, "rPos:%u : no match found", cur); continue; } { U32 const maxML = matches[nbMatches-1].len; DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of maxLength=%u", inr-istart, cur, nbMatches, maxML); if ( (maxML > sufficient_len) || (cur + maxML >= ZSTD_OPT_NUM) ) { lastSequence.mlen = maxML; lastSequence.off = matches[nbMatches-1].off; lastSequence.litlen = litlen; cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0; /* last sequence is actually only literals, fix cur to last match - note : may underflow, in which case, it's first sequence, and it's okay */ last_pos = cur + ZSTD_totalLen(lastSequence); if (cur > ZSTD_OPT_NUM) cur = 0; /* underflow => first match */ goto _shortestPath; } } /* set prices using matches found at position == cur */ for (matchNb = 0; matchNb < nbMatches; matchNb++) { U32 const offset = matches[matchNb].off; repcodes_t const repHistory = ZSTD_updateRep(opt[cur].rep, offset, ll0); U32 const lastML = matches[matchNb].len; U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch; U32 mlen; DEBUGLOG(7, "testing match %u => offCode=%4u, mlen=%2u, llen=%2u", matchNb, matches[matchNb].off, lastML, litlen); for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */ U32 const pos = cur + mlen; int const price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel); if ((pos > last_pos) || (price < opt[pos].price)) { DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)", pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price)); while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } /* fill empty positions */ opt[pos].mlen = mlen; opt[pos].off = offset; opt[pos].litlen = litlen; opt[pos].price = price; ZSTD_STATIC_ASSERT(sizeof(opt[pos].rep) == sizeof(repHistory)); memcpy(opt[pos].rep, &repHistory, sizeof(repHistory)); } else { DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)", pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price)); if (optLevel==0) break; /* early update abort; gets ~+10% speed for about -0.01 ratio loss */ } } } } } /* for (cur = 1; cur <= last_pos; cur++) */ lastSequence = opt[last_pos]; cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0; /* single sequence, and it starts before `ip` */ assert(cur < ZSTD_OPT_NUM); /* control overflow*/ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */ assert(opt[0].mlen == 0); { U32 const storeEnd = cur + 1; U32 storeStart = storeEnd; U32 seqPos = cur; DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)", last_pos, cur); (void)last_pos; assert(storeEnd < ZSTD_OPT_NUM); DEBUGLOG(6, "last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)", storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off); opt[storeEnd] = lastSequence; while (seqPos > 0) { U32 const backDist = ZSTD_totalLen(opt[seqPos]); storeStart--; DEBUGLOG(6, "sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)", seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off); opt[storeStart] = opt[seqPos]; seqPos = (seqPos > backDist) ? seqPos - backDist : 0; } /* save sequences */ DEBUGLOG(6, "sending selected sequences into seqStore") { U32 storePos; for (storePos=storeStart; storePos <= storeEnd; storePos++) { U32 const llen = opt[storePos].litlen; U32 const mlen = opt[storePos].mlen; U32 const offCode = opt[storePos].off; U32 const advance = llen + mlen; DEBUGLOG(6, "considering seq starting at %zi, llen=%u, mlen=%u", anchor - istart, (unsigned)llen, (unsigned)mlen); if (mlen==0) { /* only literals => must be last "sequence", actually starting a new stream of sequences */ assert(storePos == storeEnd); /* must be last sequence */ ip = anchor + llen; /* last "sequence" is a bunch of literals => don't progress anchor */ continue; /* will finish */ } /* repcodes update : like ZSTD_updateRep(), but update in place */ if (offCode >= ZSTD_REP_NUM) { /* full offset */ rep[2] = rep[1]; rep[1] = rep[0]; rep[0] = offCode - ZSTD_REP_MOVE; } else { /* repcode */ U32 const repCode = offCode + (llen==0); if (repCode) { /* note : if repCode==0, no change */ U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; if (repCode >= 2) rep[2] = rep[1]; rep[1] = rep[0]; rep[0] = currentOffset; } } assert(anchor + llen <= iend); ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen); ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen-MINMATCH); anchor += advance; ip = anchor; } } ZSTD_setBasePrices(optStatePtr, optLevel); } } /* while (ip < ilimit) */ /* Return the last literals size */ return (size_t)(iend - anchor); } size_t ZSTD_compressBlock_btopt( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_compressBlock_btopt"); return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_noDict); } /* used in 2-pass strategy */ static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus) { U32 s, sum=0; assert(ZSTD_FREQ_DIV+bonus >= 0); for (s=0; s<lastEltIndex+1; s++) { table[s] <<= ZSTD_FREQ_DIV+bonus; table[s]--; sum += table[s]; } return sum; } /* used in 2-pass strategy */ MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr) { if (ZSTD_compressedLiterals(optPtr)) optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0); optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0); optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0); optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0); } /* ZSTD_initStats_ultra(): * make a first compression pass, just to seed stats with more accurate starting values. * only works on first block, with no dictionary and no ldm. * this function cannot error, hence its contract must be respected. */ static void ZSTD_initStats_ultra(ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize) { U32 tmpRep[ZSTD_REP_NUM]; /* updated rep codes will sink here */ memcpy(tmpRep, rep, sizeof(tmpRep)); DEBUGLOG(4, "ZSTD_initStats_ultra (srcSize=%zu)", srcSize); assert(ms->opt.litLengthSum == 0); /* first block */ assert(seqStore->sequences == seqStore->sequencesStart); /* no ldm */ assert(ms->window.dictLimit == ms->window.lowLimit); /* no dictionary */ assert(ms->window.dictLimit - ms->nextToUpdate <= 1); /* no prefix (note: intentional overflow, defined as 2-complement) */ ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); /* generate stats into ms->opt*/ /* invalidate first scan from history */ ZSTD_resetSeqStore(seqStore); ms->window.base -= srcSize; ms->window.dictLimit += (U32)srcSize; ms->window.lowLimit = ms->window.dictLimit; ms->nextToUpdate = ms->window.dictLimit; /* re-inforce weight of collected statistics */ ZSTD_upscaleStats(&ms->opt); } size_t ZSTD_compressBlock_btultra( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize); return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); } size_t ZSTD_compressBlock_btultra2( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize) { U32 const current = (U32)((const BYTE*)src - ms->window.base); DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize); /* 2-pass strategy: * this strategy makes a first pass over first block to collect statistics * and seed next round's statistics with it. * After 1st pass, function forgets everything, and starts a new block. * Consequently, this can only work if no data has been previously loaded in tables, * aka, no dictionary, no prefix, no ldm preprocessing. * The compression ratio gain is generally small (~0.5% on first block), * the cost is 2x cpu time on first block. */ assert(srcSize <= ZSTD_BLOCKSIZE_MAX); if ( (ms->opt.litLengthSum==0) /* first block */ && (seqStore->sequences == seqStore->sequencesStart) /* no ldm */ && (ms->window.dictLimit == ms->window.lowLimit) /* no dictionary */ && (current == ms->window.dictLimit) /* start of frame, nothing already loaded nor skipped */ && (srcSize > ZSTD_PREDEF_THRESHOLD) ) { ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize); } return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); } size_t ZSTD_compressBlock_btopt_dictMatchState( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize) { return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_btultra_dictMatchState( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize) { return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_dictMatchState); } size_t ZSTD_compressBlock_btopt_extDict( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize) { return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_extDict); } size_t ZSTD_compressBlock_btultra_extDict( ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], const void* src, size_t srcSize) { return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_extDict); } /* note : no btultra2 variant for extDict nor dictMatchState, * because btultra2 is not meant to work with dictionaries * and is only specific for the first block (no prefix) */