Mercurial > hg
view tests/test-batching.py @ 25997:d4e1e947444b stable
convert: fix git copy file content conversions
There was a bug in the git convert code where if you copied a file and modified
the copy source in the same commit, and if the copy dest was alphabetically
earlier than the copy source, the converted version would use the copy dest
contents for both the source and the target.
The root of the bug is that the git diff-tree output is formatted like so:
:<mode> <mode> <oldhash> <newhash> <state> <src> <dest>
:100644 100644 c1ab79a15... 3dfc779ab... C069 oldname newname
:100644 100644 c1ab79a15... 03e2188a6... M oldname
The old code would always take the 'oldname' field as the name of the file being
processed, then it would try to do an extra convert for the newname. This works
for renames because it does a delete for the oldname and a create for the
newname.
For copies though, it ends up associating the copied content (3dfc779ab above)
with the oldname. It only happened when the dest was alphabetically before
because that meant the copy got processed before the modification.
The fix is the treat copy lines as affecting only the newname, and not marking
the oldname as processed.
author | Durham Goode <durham@fb.com> |
---|---|
date | Thu, 06 Aug 2015 17:21:46 -0700 |
parents | a7d5816087a9 |
children | cbbdd085c991 |
line wrap: on
line source
# test-batching.py - tests for transparent command batching # # Copyright 2011 Peter Arrenbrecht <peter@arrenbrecht.ch> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from mercurial.wireproto import localbatch, remotebatch, batchable, future # equivalent of repo.repository class thing(object): def hello(self): return "Ready." # equivalent of localrepo.localrepository class localthing(thing): def foo(self, one, two=None): if one: return "%s and %s" % (one, two,) return "Nope" def bar(self, b, a): return "%s und %s" % (b, a,) def greet(self, name=None): return "Hello, %s" % name def batch(self): '''Support for local batching.''' return localbatch(self) # usage of "thing" interface def use(it): # Direct call to base method shared between client and server. print it.hello() # Direct calls to proxied methods. They cause individual roundtrips. print it.foo("Un", two="Deux") print it.bar("Eins", "Zwei") # Batched call to a couple of (possibly proxied) methods. batch = it.batch() # The calls return futures to eventually hold results. foo = batch.foo(one="One", two="Two") foo2 = batch.foo(None) bar = batch.bar("Eins", "Zwei") # We can call non-batchable proxy methods, but the break the current batch # request and cause additional roundtrips. greet = batch.greet(name="John Smith") # We can also add local methods into the mix, but they break the batch too. hello = batch.hello() bar2 = batch.bar(b="Uno", a="Due") # Only now are all the calls executed in sequence, with as few roundtrips # as possible. batch.submit() # After the call to submit, the futures actually contain values. print foo.value print foo2.value print bar.value print greet.value print hello.value print bar2.value # local usage mylocal = localthing() print print "== Local" use(mylocal) # demo remoting; mimicks what wireproto and HTTP/SSH do # shared def escapearg(plain): return (plain .replace(':', '::') .replace(',', ':,') .replace(';', ':;') .replace('=', ':=')) def unescapearg(escaped): return (escaped .replace(':=', '=') .replace(':;', ';') .replace(':,', ',') .replace('::', ':')) # server side # equivalent of wireproto's global functions class server(object): def __init__(self, local): self.local = local def _call(self, name, args): args = dict(arg.split('=', 1) for arg in args) return getattr(self, name)(**args) def perform(self, req): print "REQ:", req name, args = req.split('?', 1) args = args.split('&') vals = dict(arg.split('=', 1) for arg in args) res = getattr(self, name)(**vals) print " ->", res return res def batch(self, cmds): res = [] for pair in cmds.split(';'): name, args = pair.split(':', 1) vals = {} for a in args.split(','): if a: n, v = a.split('=') vals[n] = unescapearg(v) res.append(escapearg(getattr(self, name)(**vals))) return ';'.join(res) def foo(self, one, two): return mangle(self.local.foo(unmangle(one), unmangle(two))) def bar(self, b, a): return mangle(self.local.bar(unmangle(b), unmangle(a))) def greet(self, name): return mangle(self.local.greet(unmangle(name))) myserver = server(mylocal) # local side # equivalent of wireproto.encode/decodelist, that is, type-specific marshalling # here we just transform the strings a bit to check we're properly en-/decoding def mangle(s): return ''.join(chr(ord(c) + 1) for c in s) def unmangle(s): return ''.join(chr(ord(c) - 1) for c in s) # equivalent of wireproto.wirerepository and something like http's wire format class remotething(thing): def __init__(self, server): self.server = server def _submitone(self, name, args): req = name + '?' + '&'.join(['%s=%s' % (n, v) for n, v in args]) return self.server.perform(req) def _submitbatch(self, cmds): req = [] for name, args in cmds: args = ','.join(n + '=' + escapearg(v) for n, v in args) req.append(name + ':' + args) req = ';'.join(req) res = self._submitone('batch', [('cmds', req,)]) return res.split(';') def batch(self): return remotebatch(self) @batchable def foo(self, one, two=None): if not one: yield "Nope", None encargs = [('one', mangle(one),), ('two', mangle(two),)] encresref = future() yield encargs, encresref yield unmangle(encresref.value) @batchable def bar(self, b, a): encresref = future() yield [('b', mangle(b),), ('a', mangle(a),)], encresref yield unmangle(encresref.value) # greet is coded directly. It therefore does not support batching. If it # does appear in a batch, the batch is split around greet, and the call to # greet is done in its own roundtrip. def greet(self, name=None): return unmangle(self._submitone('greet', [('name', mangle(name),)])) # demo remote usage myproxy = remotething(myserver) print print "== Remote" use(myproxy)