Mercurial > hg
view rust/hg-core/src/ancestors.rs @ 48345:d5a91701f7dc
rhg: Fix status desambiguation of symlinks and executable files
Differential Revision: https://phab.mercurial-scm.org/D11774
author | Simon Sapin <simon.sapin@octobus.net> |
---|---|
date | Tue, 23 Nov 2021 20:04:22 +0100 |
parents | 26114bd6ec60 |
children | 791f5d5f7a96 |
line wrap: on
line source
// ancestors.rs // // Copyright 2018 Georges Racinet <gracinet@anybox.fr> // // This software may be used and distributed according to the terms of the // GNU General Public License version 2 or any later version. //! Rust versions of generic DAG ancestors algorithms for Mercurial use super::{Graph, GraphError, Revision, NULL_REVISION}; use crate::dagops; use std::cmp::max; use std::collections::{BinaryHeap, HashSet}; /// Iterator over the ancestors of a given list of revisions /// This is a generic type, defined and implemented for any Graph, so that /// it's easy to /// /// - unit test in pure Rust /// - bind to main Mercurial code, potentially in several ways and have these /// bindings evolve over time pub struct AncestorsIterator<G: Graph> { graph: G, visit: BinaryHeap<Revision>, seen: HashSet<Revision>, stoprev: Revision, } /// Lazy ancestors set, backed by AncestorsIterator pub struct LazyAncestors<G: Graph + Clone> { graph: G, containsiter: AncestorsIterator<G>, initrevs: Vec<Revision>, stoprev: Revision, inclusive: bool, } pub struct MissingAncestors<G: Graph> { graph: G, bases: HashSet<Revision>, max_base: Revision, } impl<G: Graph> AncestorsIterator<G> { /// Constructor. /// /// if `inclusive` is true, then the init revisions are emitted in /// particular, otherwise iteration starts from their parents. pub fn new( graph: G, initrevs: impl IntoIterator<Item = Revision>, stoprev: Revision, inclusive: bool, ) -> Result<Self, GraphError> { let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev); if inclusive { let visit: BinaryHeap<Revision> = filtered_initrevs.collect(); let seen = visit.iter().cloned().collect(); return Ok(AncestorsIterator { visit, seen, stoprev, graph, }); } let mut this = AncestorsIterator { visit: BinaryHeap::new(), seen: HashSet::new(), stoprev, graph, }; this.seen.insert(NULL_REVISION); for rev in filtered_initrevs { for parent in this.graph.parents(rev)?.iter().cloned() { this.conditionally_push_rev(parent); } } Ok(this) } #[inline] fn conditionally_push_rev(&mut self, rev: Revision) { if self.stoprev <= rev && self.seen.insert(rev) { self.visit.push(rev); } } /// Consumes partially the iterator to tell if the given target /// revision /// is in the ancestors it emits. /// This is meant for iterators actually dedicated to that kind of /// purpose pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> { if self.seen.contains(&target) && target != NULL_REVISION { return Ok(true); } for item in self { let rev = item?; if rev == target { return Ok(true); } if rev < target { return Ok(false); } } Ok(false) } pub fn peek(&self) -> Option<Revision> { self.visit.peek().cloned() } /// Tell if the iterator is about an empty set /// /// The result does not depend whether the iterator has been consumed /// or not. /// This is mostly meant for iterators backing a lazy ancestors set pub fn is_empty(&self) -> bool { if self.visit.len() > 0 { return false; } if self.seen.len() > 1 { return false; } // at this point, the seen set is at most a singleton. // If not `self.inclusive`, it's still possible that it has only // the null revision self.seen.is_empty() || self.seen.contains(&NULL_REVISION) } } /// Main implementation for the iterator /// /// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py` /// with a few non crucial differences: /// /// - there's no filtering of invalid parent revisions. Actually, it should be /// consistent and more efficient to filter them from the end caller. /// - we don't have the optimization for adjacent revisions (i.e., the case /// where `p1 == rev - 1`), because it amounts to update the first element of /// the heap without sifting, which Rust's BinaryHeap doesn't let us do. /// - we save a few pushes by comparing with `stoprev` before pushing impl<G: Graph> Iterator for AncestorsIterator<G> { type Item = Result<Revision, GraphError>; fn next(&mut self) -> Option<Self::Item> { let current = match self.visit.peek() { None => { return None; } Some(c) => *c, }; let [p1, p2] = match self.graph.parents(current) { Ok(ps) => ps, Err(e) => return Some(Err(e)), }; if p1 < self.stoprev || !self.seen.insert(p1) { self.visit.pop(); } else { *(self.visit.peek_mut().unwrap()) = p1; }; self.conditionally_push_rev(p2); Some(Ok(current)) } } impl<G: Graph + Clone> LazyAncestors<G> { pub fn new( graph: G, initrevs: impl IntoIterator<Item = Revision>, stoprev: Revision, inclusive: bool, ) -> Result<Self, GraphError> { let v: Vec<Revision> = initrevs.into_iter().collect(); Ok(LazyAncestors { graph: graph.clone(), containsiter: AncestorsIterator::new( graph, v.iter().cloned(), stoprev, inclusive, )?, initrevs: v, stoprev, inclusive, }) } pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> { self.containsiter.contains(rev) } pub fn is_empty(&self) -> bool { self.containsiter.is_empty() } pub fn iter(&self) -> AncestorsIterator<G> { // the arguments being the same as for self.containsiter, we know // for sure that AncestorsIterator constructor can't fail AncestorsIterator::new( self.graph.clone(), self.initrevs.iter().cloned(), self.stoprev, self.inclusive, ) .unwrap() } } impl<G: Graph> MissingAncestors<G> { pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self { let mut created = MissingAncestors { graph, bases: HashSet::new(), max_base: NULL_REVISION, }; created.add_bases(bases); created } pub fn has_bases(&self) -> bool { !self.bases.is_empty() } /// Return a reference to current bases. /// /// This is useful in unit tests, but also setdiscovery.py does /// read the bases attribute of a ancestor.missingancestors instance. pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> { &self.bases } /// Computes the relative heads of current bases. /// /// The object is still usable after this. pub fn bases_heads(&self) -> Result<HashSet<Revision>, GraphError> { dagops::heads(&self.graph, self.bases.iter()) } /// Consumes the object and returns the relative heads of its bases. pub fn into_bases_heads( mut self, ) -> Result<HashSet<Revision>, GraphError> { dagops::retain_heads(&self.graph, &mut self.bases)?; Ok(self.bases) } /// Add some revisions to `self.bases` /// /// Takes care of keeping `self.max_base` up to date. pub fn add_bases( &mut self, new_bases: impl IntoIterator<Item = Revision>, ) { let mut max_base = self.max_base; self.bases.extend( new_bases .into_iter() .filter(|&rev| rev != NULL_REVISION) .map(|r| { if r > max_base { max_base = r; } r }), ); self.max_base = max_base; } /// Remove all ancestors of self.bases from the revs set (in place) pub fn remove_ancestors_from( &mut self, revs: &mut HashSet<Revision>, ) -> Result<(), GraphError> { revs.retain(|r| !self.bases.contains(r)); // the null revision is always an ancestor. Logically speaking // it's debatable in case bases is empty, but the Python // implementation always adds NULL_REVISION to bases, making it // unconditionnally true. revs.remove(&NULL_REVISION); if revs.is_empty() { return Ok(()); } // anything in revs > start is definitely not an ancestor of bases // revs <= start need to be investigated if self.max_base == NULL_REVISION { return Ok(()); } // whatever happens, we'll keep at least keepcount of them // knowing this gives us a earlier stop condition than // going all the way to the root let keepcount = revs.iter().filter(|r| **r > self.max_base).count(); let mut curr = self.max_base; while curr != NULL_REVISION && revs.len() > keepcount { if self.bases.contains(&curr) { revs.remove(&curr); self.add_parents(curr)?; } curr -= 1; } Ok(()) } /// Add the parents of `rev` to `self.bases` /// /// This has no effect on `self.max_base` #[inline] fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> { if rev == NULL_REVISION { return Ok(()); } for p in self.graph.parents(rev)?.iter().cloned() { // No need to bother the set with inserting NULL_REVISION over and // over if p != NULL_REVISION { self.bases.insert(p); } } Ok(()) } /// Return all the ancestors of revs that are not ancestors of self.bases /// /// This may include elements from revs. /// /// Equivalent to the revset (::revs - ::self.bases). Revs are returned in /// revision number order, which is a topological order. pub fn missing_ancestors( &mut self, revs: impl IntoIterator<Item = Revision>, ) -> Result<Vec<Revision>, GraphError> { // just for convenience and comparison with Python version let bases_visit = &mut self.bases; let mut revs: HashSet<Revision> = revs .into_iter() .filter(|r| !bases_visit.contains(r)) .collect(); let revs_visit = &mut revs; let mut both_visit: HashSet<Revision> = revs_visit.intersection(&bases_visit).cloned().collect(); if revs_visit.is_empty() { return Ok(Vec::new()); } let max_revs = revs_visit.iter().cloned().max().unwrap(); let start = max(self.max_base, max_revs); // TODO heuristics for with_capacity()? let mut missing: Vec<Revision> = Vec::new(); for curr in (0..=start).rev() { if revs_visit.is_empty() { break; } if both_visit.remove(&curr) { // curr's parents might have made it into revs_visit through // another path for p in self.graph.parents(curr)?.iter().cloned() { if p == NULL_REVISION { continue; } revs_visit.remove(&p); bases_visit.insert(p); both_visit.insert(p); } } else if revs_visit.remove(&curr) { missing.push(curr); for p in self.graph.parents(curr)?.iter().cloned() { if p == NULL_REVISION { continue; } if bases_visit.contains(&p) { // p is already known to be an ancestor of revs_visit revs_visit.remove(&p); both_visit.insert(p); } else if both_visit.contains(&p) { // p should have been in bases_visit revs_visit.remove(&p); bases_visit.insert(p); } else { // visit later revs_visit.insert(p); } } } else if bases_visit.contains(&curr) { for p in self.graph.parents(curr)?.iter().cloned() { if p == NULL_REVISION { continue; } if revs_visit.remove(&p) || both_visit.contains(&p) { // p is an ancestor of bases_visit, and is implicitly // in revs_visit, which means p is ::revs & ::bases. bases_visit.insert(p); both_visit.insert(p); } else { bases_visit.insert(p); } } } } missing.reverse(); Ok(missing) } } #[cfg(test)] mod tests { use super::*; use crate::testing::{SampleGraph, VecGraph}; use std::iter::FromIterator; fn list_ancestors<G: Graph>( graph: G, initrevs: Vec<Revision>, stoprev: Revision, inclusive: bool, ) -> Vec<Revision> { AncestorsIterator::new(graph, initrevs, stoprev, inclusive) .unwrap() .map(|res| res.unwrap()) .collect() } #[test] /// Same tests as test-ancestor.py, without membership /// (see also test-ancestor.py.out) fn test_list_ancestor() { assert_eq!(list_ancestors(SampleGraph, vec![], 0, false), vec![]); assert_eq!( list_ancestors(SampleGraph, vec![11, 13], 0, false), vec![8, 7, 4, 3, 2, 1, 0] ); assert_eq!( list_ancestors(SampleGraph, vec![1, 3], 0, false), vec![1, 0] ); assert_eq!( list_ancestors(SampleGraph, vec![11, 13], 0, true), vec![13, 11, 8, 7, 4, 3, 2, 1, 0] ); assert_eq!( list_ancestors(SampleGraph, vec![11, 13], 6, false), vec![8, 7] ); assert_eq!( list_ancestors(SampleGraph, vec![11, 13], 6, true), vec![13, 11, 8, 7] ); assert_eq!( list_ancestors(SampleGraph, vec![11, 13], 11, true), vec![13, 11] ); assert_eq!( list_ancestors(SampleGraph, vec![11, 13], 12, true), vec![13] ); assert_eq!( list_ancestors(SampleGraph, vec![10, 1], 0, true), vec![10, 5, 4, 2, 1, 0] ); } #[test] /// Corner case that's not directly in test-ancestors.py, but /// that happens quite often, as demonstrated by running the whole /// suite. /// For instance, run tests/test-obsolete-checkheads.t fn test_nullrev_input() { let mut iter = AncestorsIterator::new(SampleGraph, vec![-1], 0, false).unwrap(); assert_eq!(iter.next(), None) } #[test] fn test_contains() { let mut lazy = AncestorsIterator::new(SampleGraph, vec![10, 1], 0, true).unwrap(); assert!(lazy.contains(1).unwrap()); assert!(!lazy.contains(3).unwrap()); let mut lazy = AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap(); assert!(!lazy.contains(NULL_REVISION).unwrap()); } #[test] fn test_peek() { let mut iter = AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap(); // peek() gives us the next value assert_eq!(iter.peek(), Some(10)); // but it's not been consumed assert_eq!(iter.next(), Some(Ok(10))); // and iteration resumes normally assert_eq!(iter.next(), Some(Ok(5))); // let's drain the iterator to test peek() at the end while iter.next().is_some() {} assert_eq!(iter.peek(), None); } #[test] fn test_empty() { let mut iter = AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap(); assert!(!iter.is_empty()); while iter.next().is_some() {} assert!(!iter.is_empty()); let iter = AncestorsIterator::new(SampleGraph, vec![], 0, true).unwrap(); assert!(iter.is_empty()); // case where iter.seen == {NULL_REVISION} let iter = AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap(); assert!(iter.is_empty()); } /// A corrupted Graph, supporting error handling tests #[derive(Clone, Debug)] struct Corrupted; impl Graph for Corrupted { fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> { match rev { 1 => Ok([0, -1]), r => Err(GraphError::ParentOutOfRange(r)), } } } #[test] fn test_initrev_out_of_range() { // inclusive=false looks up initrev's parents right away match AncestorsIterator::new(SampleGraph, vec![25], 0, false) { Ok(_) => panic!("Should have been ParentOutOfRange"), Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)), } } #[test] fn test_next_out_of_range() { // inclusive=false looks up initrev's parents right away let mut iter = AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap(); assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0)))); } #[test] fn test_lazy_iter_contains() { let mut lazy = LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect(); // compare with iterator tests on the same initial revisions assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]); // contains() results are correct, unaffected by the fact that // we consumed entirely an iterator out of lazy assert_eq!(lazy.contains(2), Ok(true)); assert_eq!(lazy.contains(9), Ok(false)); } #[test] fn test_lazy_contains_iter() { let mut lazy = LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0] assert_eq!(lazy.contains(2), Ok(true)); assert_eq!(lazy.contains(6), Ok(false)); // after consumption of 2 by the inner iterator, results stay // consistent assert_eq!(lazy.contains(2), Ok(true)); assert_eq!(lazy.contains(5), Ok(false)); // iter() still gives us a fresh iterator let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect(); assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]); } #[test] /// Test constructor, add/get bases and heads fn test_missing_bases() -> Result<(), GraphError> { let mut missing_ancestors = MissingAncestors::new(SampleGraph, [5, 3, 1, 3].iter().cloned()); let mut as_vec: Vec<Revision> = missing_ancestors.get_bases().iter().cloned().collect(); as_vec.sort(); assert_eq!(as_vec, [1, 3, 5]); assert_eq!(missing_ancestors.max_base, 5); missing_ancestors.add_bases([3, 7, 8].iter().cloned()); as_vec = missing_ancestors.get_bases().iter().cloned().collect(); as_vec.sort(); assert_eq!(as_vec, [1, 3, 5, 7, 8]); assert_eq!(missing_ancestors.max_base, 8); as_vec = missing_ancestors.bases_heads()?.iter().cloned().collect(); as_vec.sort(); assert_eq!(as_vec, [3, 5, 7, 8]); Ok(()) } fn assert_missing_remove( bases: &[Revision], revs: &[Revision], expected: &[Revision], ) { let mut missing_ancestors = MissingAncestors::new(SampleGraph, bases.iter().cloned()); let mut revset: HashSet<Revision> = revs.iter().cloned().collect(); missing_ancestors .remove_ancestors_from(&mut revset) .unwrap(); let mut as_vec: Vec<Revision> = revset.into_iter().collect(); as_vec.sort(); assert_eq!(as_vec.as_slice(), expected); } #[test] fn test_missing_remove() { assert_missing_remove( &[1, 2, 3, 4, 7], Vec::from_iter(1..10).as_slice(), &[5, 6, 8, 9], ); assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]); assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]); } fn assert_missing_ancestors( bases: &[Revision], revs: &[Revision], expected: &[Revision], ) { let mut missing_ancestors = MissingAncestors::new(SampleGraph, bases.iter().cloned()); let missing = missing_ancestors .missing_ancestors(revs.iter().cloned()) .unwrap(); assert_eq!(missing.as_slice(), expected); } #[test] fn test_missing_ancestors() { // examples taken from test-ancestors.py by having it run // on the same graph (both naive and fast Python algs) assert_missing_ancestors(&[10], &[11], &[3, 7, 11]); assert_missing_ancestors(&[11], &[10], &[5, 10]); assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]); } /// An interesting case found by a random generator similar to /// the one in test-ancestor.py. An early version of Rust MissingAncestors /// failed this, yet none of the integration tests of the whole suite /// catched it. #[test] fn test_remove_ancestors_from_case1() { let graph: VecGraph = vec![ [NULL_REVISION, NULL_REVISION], [0, NULL_REVISION], [1, 0], [2, 1], [3, NULL_REVISION], [4, NULL_REVISION], [5, 1], [2, NULL_REVISION], [7, NULL_REVISION], [8, NULL_REVISION], [9, NULL_REVISION], [10, 1], [3, NULL_REVISION], [12, NULL_REVISION], [13, NULL_REVISION], [14, NULL_REVISION], [4, NULL_REVISION], [16, NULL_REVISION], [17, NULL_REVISION], [18, NULL_REVISION], [19, 11], [20, NULL_REVISION], [21, NULL_REVISION], [22, NULL_REVISION], [23, NULL_REVISION], [2, NULL_REVISION], [3, NULL_REVISION], [26, 24], [27, NULL_REVISION], [28, NULL_REVISION], [12, NULL_REVISION], [1, NULL_REVISION], [1, 9], [32, NULL_REVISION], [33, NULL_REVISION], [34, 31], [35, NULL_REVISION], [36, 26], [37, NULL_REVISION], [38, NULL_REVISION], [39, NULL_REVISION], [40, NULL_REVISION], [41, NULL_REVISION], [42, 26], [0, NULL_REVISION], [44, NULL_REVISION], [45, 4], [40, NULL_REVISION], [47, NULL_REVISION], [36, 0], [49, NULL_REVISION], [NULL_REVISION, NULL_REVISION], [51, NULL_REVISION], [52, NULL_REVISION], [53, NULL_REVISION], [14, NULL_REVISION], [55, NULL_REVISION], [15, NULL_REVISION], [23, NULL_REVISION], [58, NULL_REVISION], [59, NULL_REVISION], [2, NULL_REVISION], [61, 59], [62, NULL_REVISION], [63, NULL_REVISION], [NULL_REVISION, NULL_REVISION], [65, NULL_REVISION], [66, NULL_REVISION], [67, NULL_REVISION], [68, NULL_REVISION], [37, 28], [69, 25], [71, NULL_REVISION], [72, NULL_REVISION], [50, 2], [74, NULL_REVISION], [12, NULL_REVISION], [18, NULL_REVISION], [77, NULL_REVISION], [78, NULL_REVISION], [79, NULL_REVISION], [43, 33], [81, NULL_REVISION], [82, NULL_REVISION], [83, NULL_REVISION], [84, 45], [85, NULL_REVISION], [86, NULL_REVISION], [NULL_REVISION, NULL_REVISION], [88, NULL_REVISION], [NULL_REVISION, NULL_REVISION], [76, 83], [44, NULL_REVISION], [92, NULL_REVISION], [93, NULL_REVISION], [9, NULL_REVISION], [95, 67], [96, NULL_REVISION], [97, NULL_REVISION], [NULL_REVISION, NULL_REVISION], ]; let problem_rev = 28 as Revision; let problem_base = 70 as Revision; // making the problem obvious: problem_rev is a parent of problem_base assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev); let mut missing_ancestors: MissingAncestors<VecGraph> = MissingAncestors::new( graph, [60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6] .iter() .cloned(), ); assert!(missing_ancestors.bases.contains(&problem_base)); let mut revs: HashSet<Revision> = [4, 12, 41, 28, 68, 38, 1, 30, 56, 44] .iter() .cloned() .collect(); missing_ancestors.remove_ancestors_from(&mut revs).unwrap(); assert!(!revs.contains(&problem_rev)); } }