Mercurial > hg
view mercurial/hbisect.py @ 35218:d61f2a3d5e53
hgweb: only include graph-related data in jsdata variable on /graph pages (BC)
Historically, client-side graph code was not only rendering the graph itself,
but it was also adding all of the changeset information to the page as well.
It meant that JavaScript code needed to construct valid HTML as a string
(although proper escaping was done server-side). It wasn't too clunky, even
though it meant that a lot of server-side things were duplicated client-side
for no good reason, but the worst thing about it was the data format it used.
It was somewhat future-proof, but not human-friendly, because it was just a
tuple: it was possible to append things to it (as was done in e.g.
270f57d35525), but you'd then have to remember the indices and reading the
resulting JS code wasn't easy, because cur[8] is not descriptive at all.
So what would need to happen for graph to have more features, such as more
changeset information or a different vertex style (branch-closing, obsolete)?
First you'd need to take some property, process it (e.g. escape and pass
through templatefilters function, and mind the encoding too), append it to
jsdata and remember its index, then go add nearly identical JavaScript code to
4 different hgweb themes that use jsdata to render HTML, and finally try and
forget how brittle it all felt. Oh yeah, and the indices go to double digits if
we add 2 more items, say phase and obsolescence, and there are more to come.
Rendering vertex in a different style would need another property (say,
character "o", "_", or "x"), except if you want to be backwards-compatible, it
would need to go after tags and bookmarks, and that just doesn't feel right.
So here I'm trying to fix both the duplication of code and the data format:
- changesets will be rendered by hgweb templates the same way as changelog and
other such pages, so jsdata won't need any information that's not needed for
rendering the graph itself
- jsdata will be a dict, or an Object in JS, which is a lot nicer to humans and
is a lot more future-proof in the long run, because it doesn't use numeric
indices
What about hgweb themes? Obviously, this will break all hgweb themes that
render graph in JavaScript, including 3rd-party custom ones. But this will also
reduce the size of client-side code and make it more uniform, so that it can be
shared across hgweb themes, further reducing its size. The next few patches
demonstrate that it's not hard to adapt a theme to these changes. And in a
later series, I'm planning to move duplicate JS code from */graph.tmpl to
mercurial.js and leave only 4 lines of code embedded in those <script>
elements, and even that would be just to allow redefining graph.vertex
function. So adapting a custom 3rd-party theme to these changes would mean:
- creating or copying graphnode.tmpl and adding it to the map file (if a theme
doesn't already use __base__)
- modifying one line in graph.tmpl and simply removing the bigger part of
JavaScript code from there
Making these changes in this patch and not updating every hgweb theme that uses
jsdata at the same time is a bit of a cheat to make this series more
manageable: /graph pages that use jsdata are broken by this patch, but since
there are no tests that would detect this, bisect works fine; and themes are
updated separately, in the next 4 patches of this series to ease reviewing.
author | Anton Shestakov <av6@dwimlabs.net> |
---|---|
date | Fri, 01 Dec 2017 16:00:40 +0800 |
parents | 8287df8b7be5 |
children | 80da79b6fbe4 |
line wrap: on
line source
# changelog bisection for mercurial # # Copyright 2007 Matt Mackall # Copyright 2005, 2006 Benoit Boissinot <benoit.boissinot@ens-lyon.org> # # Inspired by git bisect, extension skeleton taken from mq.py. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import collections from .i18n import _ from .node import ( hex, short, ) from . import ( error, ) def bisect(repo, state): """find the next node (if any) for testing during a bisect search. returns a (nodes, number, good) tuple. 'nodes' is the final result of the bisect if 'number' is 0. Otherwise 'number' indicates the remaining possible candidates for the search and 'nodes' contains the next bisect target. 'good' is True if bisect is searching for a first good changeset, False if searching for a first bad one. """ changelog = repo.changelog clparents = changelog.parentrevs skip = set([changelog.rev(n) for n in state['skip']]) def buildancestors(bad, good): badrev = min([changelog.rev(n) for n in bad]) ancestors = collections.defaultdict(lambda: None) for rev in repo.revs("descendants(%ln) - ancestors(%ln)", good, good): ancestors[rev] = [] if ancestors[badrev] is None: return badrev, None return badrev, ancestors good = False badrev, ancestors = buildancestors(state['bad'], state['good']) if not ancestors: # looking for bad to good transition? good = True badrev, ancestors = buildancestors(state['good'], state['bad']) bad = changelog.node(badrev) if not ancestors: # now we're confused if (len(state['bad']) == 1 and len(state['good']) == 1 and state['bad'] != state['good']): raise error.Abort(_("starting revisions are not directly related")) raise error.Abort(_("inconsistent state, %s:%s is good and bad") % (badrev, short(bad))) # build children dict children = {} visit = collections.deque([badrev]) candidates = [] while visit: rev = visit.popleft() if ancestors[rev] == []: candidates.append(rev) for prev in clparents(rev): if prev != -1: if prev in children: children[prev].append(rev) else: children[prev] = [rev] visit.append(prev) candidates.sort() # have we narrowed it down to one entry? # or have all other possible candidates besides 'bad' have been skipped? tot = len(candidates) unskipped = [c for c in candidates if (c not in skip) and (c != badrev)] if tot == 1 or not unskipped: return ([changelog.node(c) for c in candidates], 0, good) perfect = tot // 2 # find the best node to test best_rev = None best_len = -1 poison = set() for rev in candidates: if rev in poison: # poison children poison.update(children.get(rev, [])) continue a = ancestors[rev] or [rev] ancestors[rev] = None x = len(a) # number of ancestors y = tot - x # number of non-ancestors value = min(x, y) # how good is this test? if value > best_len and rev not in skip: best_len = value best_rev = rev if value == perfect: # found a perfect candidate? quit early break if y < perfect and rev not in skip: # all downhill from here? # poison children poison.update(children.get(rev, [])) continue for c in children.get(rev, []): if ancestors[c]: ancestors[c] = list(set(ancestors[c] + a)) else: ancestors[c] = a + [c] assert best_rev is not None best_node = changelog.node(best_rev) return ([best_node], tot, good) def extendrange(repo, state, nodes, good): # bisect is incomplete when it ends on a merge node and # one of the parent was not checked. parents = repo[nodes[0]].parents() if len(parents) > 1: if good: side = state['bad'] else: side = state['good'] num = len(set(i.node() for i in parents) & set(side)) if num == 1: return parents[0].ancestor(parents[1]) return None def load_state(repo): state = {'current': [], 'good': [], 'bad': [], 'skip': []} for l in repo.vfs.tryreadlines("bisect.state"): kind, node = l[:-1].split() node = repo.lookup(node) if kind not in state: raise error.Abort(_("unknown bisect kind %s") % kind) state[kind].append(node) return state def save_state(repo, state): f = repo.vfs("bisect.state", "w", atomictemp=True) with repo.wlock(): for kind in sorted(state): for node in state[kind]: f.write("%s %s\n" % (kind, hex(node))) f.close() def resetstate(repo): """remove any bisect state from the repository""" if repo.vfs.exists("bisect.state"): repo.vfs.unlink("bisect.state") def checkstate(state): """check we have both 'good' and 'bad' to define a range Raise Abort exception otherwise.""" if state['good'] and state['bad']: return True if not state['good']: raise error.Abort(_('cannot bisect (no known good revisions)')) else: raise error.Abort(_('cannot bisect (no known bad revisions)')) def get(repo, status): """ Return a list of revision(s) that match the given status: - ``good``, ``bad``, ``skip``: csets explicitly marked as good/bad/skip - ``goods``, ``bads`` : csets topologically good/bad - ``range`` : csets taking part in the bisection - ``pruned`` : csets that are goods, bads or skipped - ``untested`` : csets whose fate is yet unknown - ``ignored`` : csets ignored due to DAG topology - ``current`` : the cset currently being bisected """ state = load_state(repo) if status in ('good', 'bad', 'skip', 'current'): return map(repo.changelog.rev, state[status]) else: # In the following sets, we do *not* call 'bisect()' with more # than one level of recursion, because that can be very, very # time consuming. Instead, we always develop the expression as # much as possible. # 'range' is all csets that make the bisection: # - have a good ancestor and a bad descendant, or conversely # that's because the bisection can go either way range = '( bisect(bad)::bisect(good) | bisect(good)::bisect(bad) )' _t = repo.revs('bisect(good)::bisect(bad)') # The sets of topologically good or bad csets if len(_t) == 0: # Goods are topologically after bads goods = 'bisect(good)::' # Pruned good csets bads = '::bisect(bad)' # Pruned bad csets else: # Goods are topologically before bads goods = '::bisect(good)' # Pruned good csets bads = 'bisect(bad)::' # Pruned bad csets # 'pruned' is all csets whose fate is already known: good, bad, skip skips = 'bisect(skip)' # Pruned skipped csets pruned = '( (%s) | (%s) | (%s) )' % (goods, bads, skips) # 'untested' is all cset that are- in 'range', but not in 'pruned' untested = '( (%s) - (%s) )' % (range, pruned) # 'ignored' is all csets that were not used during the bisection # due to DAG topology, but may however have had an impact. # E.g., a branch merged between bads and goods, but whose branch- # point is out-side of the range. iba = '::bisect(bad) - ::bisect(good)' # Ignored bads' ancestors iga = '::bisect(good) - ::bisect(bad)' # Ignored goods' ancestors ignored = '( ( (%s) | (%s) ) - (%s) )' % (iba, iga, range) if status == 'range': return repo.revs(range) elif status == 'pruned': return repo.revs(pruned) elif status == 'untested': return repo.revs(untested) elif status == 'ignored': return repo.revs(ignored) elif status == "goods": return repo.revs(goods) elif status == "bads": return repo.revs(bads) else: raise error.ParseError(_('invalid bisect state')) def label(repo, node): rev = repo.changelog.rev(node) # Try explicit sets if rev in get(repo, 'good'): # i18n: bisect changeset status return _('good') if rev in get(repo, 'bad'): # i18n: bisect changeset status return _('bad') if rev in get(repo, 'skip'): # i18n: bisect changeset status return _('skipped') if rev in get(repo, 'untested') or rev in get(repo, 'current'): # i18n: bisect changeset status return _('untested') if rev in get(repo, 'ignored'): # i18n: bisect changeset status return _('ignored') # Try implicit sets if rev in get(repo, 'goods'): # i18n: bisect changeset status return _('good (implicit)') if rev in get(repo, 'bads'): # i18n: bisect changeset status return _('bad (implicit)') return None def shortlabel(label): if label: return label[0].upper() return None def printresult(ui, repo, state, displayer, nodes, good): if len(nodes) == 1: # narrowed it down to a single revision if good: ui.write(_("The first good revision is:\n")) else: ui.write(_("The first bad revision is:\n")) displayer.show(repo[nodes[0]]) extendnode = extendrange(repo, state, nodes, good) if extendnode is not None: ui.write(_('Not all ancestors of this changeset have been' ' checked.\nUse bisect --extend to continue the ' 'bisection from\nthe common ancestor, %s.\n') % extendnode) else: # multiple possible revisions if good: ui.write(_("Due to skipped revisions, the first " "good revision could be any of:\n")) else: ui.write(_("Due to skipped revisions, the first " "bad revision could be any of:\n")) for n in nodes: displayer.show(repo[n]) displayer.close()