Mercurial > hg
view tests/test-ancestor.py @ 30129:d69d86e7d6c8
py3: test to check which commands run
This test helps us to keep track on the commands which runs to Python 3.
The full traceback is hidden. Thanks to Augie and Martijn to wrap it up
in four lines.
author | Pulkit Goyal <7895pulkit@gmail.com> |
---|---|
date | Sun, 09 Oct 2016 13:59:20 +0200 |
parents | 21a507f9a6cd |
children | 945f8229b30d |
line wrap: on
line source
from __future__ import absolute_import, print_function import binascii import getopt import math import os import random import sys import time from mercurial.node import nullrev from mercurial import ( ancestor, commands, hg, ui as uimod, util, ) def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7): '''nodes: total number of nodes in the graph rootprob: probability that a new node (not 0) will be a root mergeprob: probability that, excluding a root a node will be a merge prevprob: probability that p1 will be the previous node return value is a graph represented as an adjacency list. ''' graph = [None] * nodes for i in xrange(nodes): if i == 0 or rng.random() < rootprob: graph[i] = [nullrev] elif i == 1: graph[i] = [0] elif rng.random() < mergeprob: if i == 2 or rng.random() < prevprob: # p1 is prev p1 = i - 1 else: p1 = rng.randrange(i - 1) p2 = rng.choice(range(0, p1) + range(p1 + 1, i)) graph[i] = [p1, p2] elif rng.random() < prevprob: graph[i] = [i - 1] else: graph[i] = [rng.randrange(i - 1)] return graph def buildancestorsets(graph): ancs = [None] * len(graph) for i in xrange(len(graph)): ancs[i] = set([i]) if graph[i] == [nullrev]: continue for p in graph[i]: ancs[i].update(ancs[p]) return ancs class naiveincrementalmissingancestors(object): def __init__(self, ancs, bases): self.ancs = ancs self.bases = set(bases) def addbases(self, newbases): self.bases.update(newbases) def removeancestorsfrom(self, revs): for base in self.bases: if base != nullrev: revs.difference_update(self.ancs[base]) revs.discard(nullrev) def missingancestors(self, revs): res = set() for rev in revs: if rev != nullrev: res.update(self.ancs[rev]) for base in self.bases: if base != nullrev: res.difference_update(self.ancs[base]) return sorted(res) def test_missingancestors(seed, rng): # empirically observed to take around 1 second graphcount = 100 testcount = 10 inccount = 10 nerrs = [0] # the default mu and sigma give us a nice distribution of mostly # single-digit counts (including 0) with some higher ones def lognormrandom(mu, sigma): return int(math.floor(rng.lognormvariate(mu, sigma))) def samplerevs(nodes, mu=1.1, sigma=0.8): count = min(lognormrandom(mu, sigma), len(nodes)) return rng.sample(nodes, count) def err(seed, graph, bases, seq, output, expected): if nerrs[0] == 0: print('seed:', hex(seed)[:-1], file=sys.stderr) if gerrs[0] == 0: print('graph:', graph, file=sys.stderr) print('* bases:', bases, file=sys.stderr) print('* seq: ', seq, file=sys.stderr) print('* output: ', output, file=sys.stderr) print('* expected:', expected, file=sys.stderr) nerrs[0] += 1 gerrs[0] += 1 for g in xrange(graphcount): graph = buildgraph(rng) ancs = buildancestorsets(graph) gerrs = [0] for _ in xrange(testcount): # start from nullrev to include it as a possibility graphnodes = range(nullrev, len(graph)) bases = samplerevs(graphnodes) # fast algorithm inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases) # reference slow algorithm naiveinc = naiveincrementalmissingancestors(ancs, bases) seq = [] revs = [] for _ in xrange(inccount): if rng.random() < 0.2: newbases = samplerevs(graphnodes) seq.append(('addbases', newbases)) inc.addbases(newbases) naiveinc.addbases(newbases) if rng.random() < 0.4: # larger set so that there are more revs to remove from revs = samplerevs(graphnodes, mu=1.5) seq.append(('removeancestorsfrom', revs)) hrevs = set(revs) rrevs = set(revs) inc.removeancestorsfrom(hrevs) naiveinc.removeancestorsfrom(rrevs) if hrevs != rrevs: err(seed, graph, bases, seq, sorted(hrevs), sorted(rrevs)) else: revs = samplerevs(graphnodes) seq.append(('missingancestors', revs)) h = inc.missingancestors(revs) r = naiveinc.missingancestors(revs) if h != r: err(seed, graph, bases, seq, h, r) # graph is a dict of child->parent adjacency lists for this graph: # o 13 # | # | o 12 # | | # | | o 11 # | | |\ # | | | | o 10 # | | | | | # | o---+ | 9 # | | | | | # o | | | | 8 # / / / / # | | o | 7 # | | | | # o---+ | 6 # / / / # | | o 5 # | |/ # | o 4 # | | # o | 3 # | | # | o 2 # |/ # o 1 # | # o 0 graph = {0: [-1], 1: [0], 2: [1], 3: [1], 4: [2], 5: [4], 6: [4], 7: [4], 8: [-1], 9: [6, 7], 10: [5], 11: [3, 7], 12: [9], 13: [8]} def genlazyancestors(revs, stoprev=0, inclusive=False): print(("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" % (revs, stoprev, inclusive))) return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev, inclusive=inclusive) def printlazyancestors(s, l): print('membership: %r' % [n for n in l if n in s]) print('iteration: %r' % list(s)) def test_lazyancestors(): # Empty revs s = genlazyancestors([]) printlazyancestors(s, [3, 0, -1]) # Standard example s = genlazyancestors([11, 13]) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Standard with ancestry in the initial set (1 is ancestor of 3) s = genlazyancestors([1, 3]) printlazyancestors(s, [1, -1, 0]) # Including revs s = genlazyancestors([11, 13], inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Test with stoprev s = genlazyancestors([11, 13], stoprev=6) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) s = genlazyancestors([11, 13], stoprev=6, inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # The C gca algorithm requires a real repo. These are textual descriptions of # DAGs that have been known to be problematic. dagtests = [ '+2*2*2/*3/2', '+3*3/*2*2/*4*4/*4/2*4/2*2', ] def test_gca(): u = uimod.ui() for i, dag in enumerate(dagtests): repo = hg.repository(u, 'gca%d' % i, create=1) cl = repo.changelog if not util.safehasattr(cl.index, 'ancestors'): # C version not available return commands.debugbuilddag(u, repo, dag) # Compare the results of the Python and C versions. This does not # include choosing a winner when more than one gca exists -- we make # sure both return exactly the same set of gcas. for a in cl: for b in cl: cgcas = sorted(cl.index.ancestors(a, b)) pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b)) if cgcas != pygcas: print("test_gca: for dag %s, gcas for %d, %d:" % (dag, a, b)) print(" C returned: %s" % cgcas) print(" Python returned: %s" % pygcas) def main(): seed = None opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed=']) for o, a in opts: if o in ('-s', '--seed'): seed = long(a, base=0) # accepts base 10 or 16 strings if seed is None: try: seed = long(binascii.hexlify(os.urandom(16)), 16) except AttributeError: seed = long(time.time() * 1000) rng = random.Random(seed) test_missingancestors(seed, rng) test_lazyancestors() test_gca() if __name__ == '__main__': main()