view tests/test-filecache.py @ 37533:df4985497986

wireproto: implement capabilities for wire protocol v2 The capabilities mechanism for wire protocol version 2 represents a clean break from version 1. Instead of effectively exchanging a set of capabilities, we're exchanging a rich data structure. This data structure currently contains information about every available command, including its accepted arguments. It also contains information about supported compression formats. Exposing information about supported commands will allow clients to automatically generate bindings to the server. Clients will be able to do things like detect when they are attempting to run a command that isn't known to the server. Exposing the required permissions to run a command can be used by clients to determine if they have privileges to call a command before actually calling it. We could potentially even have clients send credentials preemptively without waiting for the server to deny the command request. Lots of potential here. The data returned by this command will likely evolve heavily. So we shouldn't bikeshed the implementation just yet. Differential Revision: https://phab.mercurial-scm.org/D3200
author Gregory Szorc <gregory.szorc@gmail.com>
date Mon, 09 Apr 2018 11:52:31 -0700
parents ffa3026d4196
children b3ffa2faae04
line wrap: on
line source

from __future__ import absolute_import, print_function
import os
import stat
import subprocess
import sys

if subprocess.call(['python', '%s/hghave' % os.environ['TESTDIR'],
                    'cacheable']):
    sys.exit(80)

from mercurial import (
    extensions,
    hg,
    localrepo,
    pycompat,
    ui as uimod,
    util,
    vfs as vfsmod,
)

if pycompat.ispy3:
    xrange = range

class fakerepo(object):
    def __init__(self):
        self._filecache = {}

    class fakevfs(object):

        def join(self, p):
            return p

    vfs = fakevfs()

    def unfiltered(self):
        return self

    def sjoin(self, p):
        return p

    @localrepo.repofilecache('x', 'y')
    def cached(self):
        print('creating')
        return 'string from function'

    def invalidate(self):
        for k in self._filecache:
            try:
                delattr(self, k)
            except AttributeError:
                pass

def basic(repo):
    print("* neither file exists")
    # calls function
    repo.cached

    repo.invalidate()
    print("* neither file still exists")
    # uses cache
    repo.cached

    # create empty file
    f = open('x', 'w')
    f.close()
    repo.invalidate()
    print("* empty file x created")
    # should recreate the object
    repo.cached

    f = open('x', 'w')
    f.write('a')
    f.close()
    repo.invalidate()
    print("* file x changed size")
    # should recreate the object
    repo.cached

    repo.invalidate()
    print("* nothing changed with either file")
    # stats file again, reuses object
    repo.cached

    # atomic replace file, size doesn't change
    # hopefully st_mtime doesn't change as well so this doesn't use the cache
    # because of inode change
    f = vfsmod.vfs('.')('x', 'w', atomictemp=True)
    f.write('b')
    f.close()

    repo.invalidate()
    print("* file x changed inode")
    repo.cached

    # create empty file y
    f = open('y', 'w')
    f.close()
    repo.invalidate()
    print("* empty file y created")
    # should recreate the object
    repo.cached

    f = open('y', 'w')
    f.write('A')
    f.close()
    repo.invalidate()
    print("* file y changed size")
    # should recreate the object
    repo.cached

    f = vfsmod.vfs('.')('y', 'w', atomictemp=True)
    f.write('B')
    f.close()

    repo.invalidate()
    print("* file y changed inode")
    repo.cached

    f = vfsmod.vfs('.')('x', 'w', atomictemp=True)
    f.write('c')
    f.close()
    f = vfsmod.vfs('.')('y', 'w', atomictemp=True)
    f.write('C')
    f.close()

    repo.invalidate()
    print("* both files changed inode")
    repo.cached

def fakeuncacheable():
    def wrapcacheable(orig, *args, **kwargs):
        return False

    def wrapinit(orig, *args, **kwargs):
        pass

    originit = extensions.wrapfunction(util.cachestat, '__init__', wrapinit)
    origcacheable = extensions.wrapfunction(util.cachestat, 'cacheable',
                                            wrapcacheable)

    for fn in ['x', 'y']:
        try:
            os.remove(fn)
        except OSError:
            pass

    basic(fakerepo())

    util.cachestat.cacheable = origcacheable
    util.cachestat.__init__ = originit

def test_filecache_synced():
    # test old behavior that caused filecached properties to go out of sync
    os.system('hg init && echo a >> a && hg ci -qAm.')
    repo = hg.repository(uimod.ui.load())
    # first rollback clears the filecache, but changelog to stays in __dict__
    repo.rollback()
    repo.commit('.')
    # second rollback comes along and touches the changelog externally
    # (file is moved)
    repo.rollback()
    # but since changelog isn't under the filecache control anymore, we don't
    # see that it changed, and return the old changelog without reconstructing
    # it
    repo.commit('.')

def setbeforeget(repo):
    os.remove('x')
    os.remove('y')
    repo.cached = 'string set externally'
    repo.invalidate()
    print("* neither file exists")
    print(repo.cached)
    repo.invalidate()
    f = open('x', 'w')
    f.write('a')
    f.close()
    print("* file x created")
    print(repo.cached)

    repo.cached = 'string 2 set externally'
    repo.invalidate()
    print("* string set externally again")
    print(repo.cached)

    repo.invalidate()
    f = open('y', 'w')
    f.write('b')
    f.close()
    print("* file y created")
    print(repo.cached)

def antiambiguity():
    filename = 'ambigcheck'

    # try some times, because reproduction of ambiguity depends on
    # "filesystem time"
    for i in xrange(5):
        fp = open(filename, 'w')
        fp.write('FOO')
        fp.close()

        oldstat = os.stat(filename)
        if oldstat[stat.ST_CTIME] != oldstat[stat.ST_MTIME]:
            # subsequent changing never causes ambiguity
            continue

        repetition = 3

        # repeat changing via checkambigatclosing, to examine whether
        # st_mtime is advanced multiple times as expected
        for i in xrange(repetition):
            # explicit closing
            fp = vfsmod.checkambigatclosing(open(filename, 'a'))
            fp.write('FOO')
            fp.close()

            # implicit closing by "with" statement
            with vfsmod.checkambigatclosing(open(filename, 'a')) as fp:
                fp.write('BAR')

        newstat = os.stat(filename)
        if oldstat[stat.ST_CTIME] != newstat[stat.ST_CTIME]:
            # timestamp ambiguity was naturally avoided while repetition
            continue

        # st_mtime should be advanced "repetition * 2" times, because
        # all changes occurred at same time (in sec)
        expected = (oldstat[stat.ST_MTIME] + repetition * 2) & 0x7fffffff
        if newstat[stat.ST_MTIME] != expected:
            print("'newstat[stat.ST_MTIME] %s is not %s (as %s + %s * 2)" %
                  (newstat[stat.ST_MTIME], expected,
                   oldstat[stat.ST_MTIME], repetition))

        # no more examination is needed regardless of result
        break
    else:
        # This platform seems too slow to examine anti-ambiguity
        # of file timestamp (or test happened to be executed at
        # bad timing). Exit silently in this case, because running
        # on other faster platforms can detect problems
        pass

print('basic:')
print()
basic(fakerepo())
print()
print('fakeuncacheable:')
print()
fakeuncacheable()
test_filecache_synced()
print()
print('setbeforeget:')
print()
setbeforeget(fakerepo())
print()
print('antiambiguity:')
print()
antiambiguity()