Mercurial > hg
view tests/test-batching.py @ 26631:e077ce385609
localrepo: restore dirstate to one before rollbacking if not parent-gone
'localrepository.rollback()' explicilty restores dirstate, only if at
least one of current parents of the working directory is removed at
rollbacking (a.k.a "parent-gone").
After DirstateTransactionPlan, 'dirstate.write()' will cause marking
'.hg/dirstate' as a file to be restored at rollbacking.
https://mercurial.selenic.com/wiki/DirstateTransactionPlan
Then, 'transaction.rollback()' restores '.hg/dirstate' regardless of
parents of the working directory at that time, and this causes
unexpected dirstate changes if not "parent-gone" (e.g. "hg update" to
another branch after "hg commit" or so, then "hg rollback").
To avoid such situation, this patch restores dirstate to one before
rollbacking if not "parent-gone".
before:
b1. restore dirstate explicitly, if "parent-gone"
after:
a1. save dirstate before actual rollbacking via dirstateguard
a2. restore dirstate via 'transaction.rollback()'
a3. if "parent-gone"
- discard backup (a1)
- restore dirstate from 'undo.dirstate'
a4. otherwise, restore dirstate from backup (a1)
Even though restoring dirstate at (a3) after (a2) seems redundant,
this patch keeps this existing code path, because:
- it isn't ensured that 'dirstate.write()' was invoked at least once
while transaction running
If not, '.hg/dirstate' isn't restored at (a2).
In addition to it, rude 3rd party extension invoking
'dirstate.write()' without 'repo' while transaction running (see
subsequent patches for detail) may break consistency of a file
backup-ed by transaction.
- this patch mainly focuses on changes for DirstateTransactionPlan
Restoring dirstate at (a3) itself should be cheaper enough than
rollbacking itself. Redundancy will be removed in next step.
Newly added test is almost meaningless at this point. It will be used
to detect regression while implementing delayed dirstate write out.
author | FUJIWARA Katsunori <foozy@lares.dti.ne.jp> |
---|---|
date | Tue, 13 Oct 2015 12:25:43 -0700 |
parents | cbbdd085c991 |
children | f8872b507cd3 |
line wrap: on
line source
# test-batching.py - tests for transparent command batching # # Copyright 2011 Peter Arrenbrecht <peter@arrenbrecht.ch> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from mercurial.peer import localbatch, batchable, future from mercurial.wireproto import remotebatch # equivalent of repo.repository class thing(object): def hello(self): return "Ready." # equivalent of localrepo.localrepository class localthing(thing): def foo(self, one, two=None): if one: return "%s and %s" % (one, two,) return "Nope" def bar(self, b, a): return "%s und %s" % (b, a,) def greet(self, name=None): return "Hello, %s" % name def batch(self): '''Support for local batching.''' return localbatch(self) # usage of "thing" interface def use(it): # Direct call to base method shared between client and server. print it.hello() # Direct calls to proxied methods. They cause individual roundtrips. print it.foo("Un", two="Deux") print it.bar("Eins", "Zwei") # Batched call to a couple of (possibly proxied) methods. batch = it.batch() # The calls return futures to eventually hold results. foo = batch.foo(one="One", two="Two") foo2 = batch.foo(None) bar = batch.bar("Eins", "Zwei") # We can call non-batchable proxy methods, but the break the current batch # request and cause additional roundtrips. greet = batch.greet(name="John Smith") # We can also add local methods into the mix, but they break the batch too. hello = batch.hello() bar2 = batch.bar(b="Uno", a="Due") # Only now are all the calls executed in sequence, with as few roundtrips # as possible. batch.submit() # After the call to submit, the futures actually contain values. print foo.value print foo2.value print bar.value print greet.value print hello.value print bar2.value # local usage mylocal = localthing() print print "== Local" use(mylocal) # demo remoting; mimicks what wireproto and HTTP/SSH do # shared def escapearg(plain): return (plain .replace(':', '::') .replace(',', ':,') .replace(';', ':;') .replace('=', ':=')) def unescapearg(escaped): return (escaped .replace(':=', '=') .replace(':;', ';') .replace(':,', ',') .replace('::', ':')) # server side # equivalent of wireproto's global functions class server(object): def __init__(self, local): self.local = local def _call(self, name, args): args = dict(arg.split('=', 1) for arg in args) return getattr(self, name)(**args) def perform(self, req): print "REQ:", req name, args = req.split('?', 1) args = args.split('&') vals = dict(arg.split('=', 1) for arg in args) res = getattr(self, name)(**vals) print " ->", res return res def batch(self, cmds): res = [] for pair in cmds.split(';'): name, args = pair.split(':', 1) vals = {} for a in args.split(','): if a: n, v = a.split('=') vals[n] = unescapearg(v) res.append(escapearg(getattr(self, name)(**vals))) return ';'.join(res) def foo(self, one, two): return mangle(self.local.foo(unmangle(one), unmangle(two))) def bar(self, b, a): return mangle(self.local.bar(unmangle(b), unmangle(a))) def greet(self, name): return mangle(self.local.greet(unmangle(name))) myserver = server(mylocal) # local side # equivalent of wireproto.encode/decodelist, that is, type-specific marshalling # here we just transform the strings a bit to check we're properly en-/decoding def mangle(s): return ''.join(chr(ord(c) + 1) for c in s) def unmangle(s): return ''.join(chr(ord(c) - 1) for c in s) # equivalent of wireproto.wirerepository and something like http's wire format class remotething(thing): def __init__(self, server): self.server = server def _submitone(self, name, args): req = name + '?' + '&'.join(['%s=%s' % (n, v) for n, v in args]) return self.server.perform(req) def _submitbatch(self, cmds): req = [] for name, args in cmds: args = ','.join(n + '=' + escapearg(v) for n, v in args) req.append(name + ':' + args) req = ';'.join(req) res = self._submitone('batch', [('cmds', req,)]) return res.split(';') def batch(self): return remotebatch(self) @batchable def foo(self, one, two=None): if not one: yield "Nope", None encargs = [('one', mangle(one),), ('two', mangle(two),)] encresref = future() yield encargs, encresref yield unmangle(encresref.value) @batchable def bar(self, b, a): encresref = future() yield [('b', mangle(b),), ('a', mangle(a),)], encresref yield unmangle(encresref.value) # greet is coded directly. It therefore does not support batching. If it # does appear in a batch, the batch is split around greet, and the call to # greet is done in its own roundtrip. def greet(self, name=None): return unmangle(self._submitone('greet', [('name', mangle(name),)])) # demo remote usage myproxy = remotething(myserver) print print "== Remote" use(myproxy)