view mercurial/peer.py @ 27430:e240e914d226 stable

revlog: seek to end of file before writing (issue4943) Revlogs were recently refactored to open file handles in "a+" and use a persistent file handle for reading and writing. This drastically reduced the number of file handles being opened. Unfortunately, it appears that some versions of Solaris lose the file offset when performing a write after the handle has been seeked. The simplest workaround is to seek to EOF on files opened in a+ mode before writing to them, which is what this patch does. Ideally, this code would exist in the vfs layer. However, this would require creating a proxy class for file objects in order to provide a custom implementation of write(). This would add overhead. Since revlogs are the only files we open in a+ mode, the one-off workaround in revlog.py should be sufficient. This patch appears to have little to no impact on performance on my Linux machine.
author Gregory Szorc <gregory.szorc@gmail.com>
date Thu, 17 Dec 2015 17:16:02 -0800
parents e6b56b2c1f26
children d549cbb5503d
line wrap: on
line source

# peer.py - repository base classes for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
# Copyright 2006 Vadim Gelfer <vadim.gelfer@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

from .i18n import _
from . import (
    error,
    util,
)

# abstract batching support

class future(object):
    '''placeholder for a value to be set later'''
    def set(self, value):
        if util.safehasattr(self, 'value'):
            raise error.RepoError("future is already set")
        self.value = value

class batcher(object):
    '''base class for batches of commands submittable in a single request

    All methods invoked on instances of this class are simply queued and
    return a a future for the result. Once you call submit(), all the queued
    calls are performed and the results set in their respective futures.
    '''
    def __init__(self):
        self.calls = []
    def __getattr__(self, name):
        def call(*args, **opts):
            resref = future()
            self.calls.append((name, args, opts, resref,))
            return resref
        return call
    def submit(self):
        pass

class localbatch(batcher):
    '''performs the queued calls directly'''
    def __init__(self, local):
        batcher.__init__(self)
        self.local = local
    def submit(self):
        for name, args, opts, resref in self.calls:
            resref.set(getattr(self.local, name)(*args, **opts))

def batchable(f):
    '''annotation for batchable methods

    Such methods must implement a coroutine as follows:

    @batchable
    def sample(self, one, two=None):
        # Handle locally computable results first:
        if not one:
            yield "a local result", None
        # Build list of encoded arguments suitable for your wire protocol:
        encargs = [('one', encode(one),), ('two', encode(two),)]
        # Create future for injection of encoded result:
        encresref = future()
        # Return encoded arguments and future:
        yield encargs, encresref
        # Assuming the future to be filled with the result from the batched
        # request now. Decode it:
        yield decode(encresref.value)

    The decorator returns a function which wraps this coroutine as a plain
    method, but adds the original method as an attribute called "batchable",
    which is used by remotebatch to split the call into separate encoding and
    decoding phases.
    '''
    def plain(*args, **opts):
        batchable = f(*args, **opts)
        encargsorres, encresref = batchable.next()
        if not encresref:
            return encargsorres # a local result in this case
        self = args[0]
        encresref.set(self._submitone(f.func_name, encargsorres))
        return batchable.next()
    setattr(plain, 'batchable', f)
    return plain

class peerrepository(object):

    def batch(self):
        return localbatch(self)

    def capable(self, name):
        '''tell whether repo supports named capability.
        return False if not supported.
        if boolean capability, return True.
        if string capability, return string.'''
        caps = self._capabilities()
        if name in caps:
            return True
        name_eq = name + '='
        for cap in caps:
            if cap.startswith(name_eq):
                return cap[len(name_eq):]
        return False

    def requirecap(self, name, purpose):
        '''raise an exception if the given capability is not present'''
        if not self.capable(name):
            raise error.CapabilityError(
                _('cannot %s; remote repository does not '
                  'support the %r capability') % (purpose, name))

    def local(self):
        '''return peer as a localrepo, or None'''
        return None

    def peer(self):
        return self

    def canpush(self):
        return True

    def close(self):
        pass