Mercurial > hg
view rust/hg-core/src/dagops.rs @ 51605:e4b9f8a74d5f
match: simplify the rust-side file pattern kind parsing
There's no need to add the ':' characters if
we're simply pattern matching against constants next.
author | Arseniy Alekseyev <aalekseyev@janestreet.com> |
---|---|
date | Tue, 16 Apr 2024 17:21:37 +0100 |
parents | c4f1a790bda8 |
children |
line wrap: on
line source
// dagops.rs // // Copyright 2019 Georges Racinet <georges.racinet@octobus.net> // // This software may be used and distributed according to the terms of the // GNU General Public License version 2 or any later version. //! Miscellaneous DAG operations //! //! # Terminology //! - By *relative heads* of a collection of revision numbers (`Revision`), we //! mean those revisions that have no children among the collection. //! - Similarly *relative roots* of a collection of `Revision`, we mean those //! whose parents, if any, don't belong to the collection. use bitvec::slice::BitSlice; use super::{Graph, GraphError, Revision, NULL_REVISION}; use crate::{ancestors::AncestorsIterator, BaseRevision}; use std::collections::{BTreeSet, HashSet}; fn remove_parents<S: std::hash::BuildHasher>( graph: &impl Graph, rev: Revision, set: &mut HashSet<Revision, S>, ) -> Result<(), GraphError> { for parent in graph.parents(rev)?.iter() { if *parent != NULL_REVISION { set.remove(parent); } } Ok(()) } /// Relative heads out of some revisions, passed as an iterator. /// /// These heads are defined as those revisions that have no children /// among those emitted by the iterator. /// /// # Performance notes /// Internally, this clones the iterator, and builds a `HashSet` out of it. /// /// This function takes an `Iterator` instead of `impl IntoIterator` to /// guarantee that cloning the iterator doesn't result in cloning the full /// construct it comes from. pub fn heads<'a>( graph: &impl Graph, iter_revs: impl Clone + Iterator<Item = &'a Revision>, ) -> Result<HashSet<Revision>, GraphError> { let mut heads: HashSet<Revision> = iter_revs.clone().cloned().collect(); heads.remove(&NULL_REVISION); for rev in iter_revs { if *rev != NULL_REVISION { remove_parents(graph, *rev, &mut heads)?; } } Ok(heads) } /// Retain in `revs` only its relative heads. /// /// This is an in-place operation, so that control of the incoming /// set is left to the caller. /// - a direct Python binding would probably need to build its own `HashSet` /// from an incoming iterable, even if its sole purpose is to extract the /// heads. /// - a Rust caller can decide whether cloning beforehand is appropriate /// /// # Performance notes /// Internally, this function will store a full copy of `revs` in a `Vec`. pub fn retain_heads<S: std::hash::BuildHasher>( graph: &impl Graph, revs: &mut HashSet<Revision, S>, ) -> Result<(), GraphError> { revs.remove(&NULL_REVISION); // we need to construct an iterable copy of revs to avoid itering while // mutating let as_vec: Vec<Revision> = revs.iter().cloned().collect(); for rev in as_vec { if rev != NULL_REVISION { remove_parents(graph, rev, revs)?; } } Ok(()) } /// Optimized version of `retain_heads` that expects an zeroed bitvec of the /// size of the graph, to act as a faster but less space-efficient `HashSet`. /// /// # Panics /// /// Can panic if `not_heads` is shorten than the length of graph. pub fn retain_heads_fast( graph: &impl Graph, not_heads: &mut BitSlice, filtered_revs: &HashSet<Revision>, ) -> Result<(), GraphError> { for idx in (0..not_heads.len()).rev() { let rev = Revision(idx as BaseRevision); if !not_heads[idx] && filtered_revs.contains(&rev) { not_heads.get_mut(idx).unwrap().commit(true); continue; } for parent in graph.parents(rev)?.iter() { if *parent != NULL_REVISION { not_heads.get_mut(parent.0 as usize).unwrap().commit(true); } } } Ok(()) } /// Roots of `revs`, passed as a `HashSet` /// /// They are returned in arbitrary order pub fn roots<G: Graph, S: std::hash::BuildHasher>( graph: &G, revs: &HashSet<Revision, S>, ) -> Result<Vec<Revision>, GraphError> { let mut roots: Vec<Revision> = Vec::new(); for rev in revs { if graph .parents(*rev)? .iter() .filter(|p| **p != NULL_REVISION) .all(|p| !revs.contains(p)) { roots.push(*rev); } } Ok(roots) } /// Compute the topological range between two collections of revisions /// /// This is equivalent to the revset `<roots>::<heads>`. /// /// Currently, the given `Graph` has to implement `Clone`, which means /// actually cloning just a reference-counted Python pointer if /// it's passed over through `rust-cpython`. This is due to the internal /// use of `AncestorsIterator` /// /// # Algorithmic details /// /// This is a two-pass swipe inspired from what `reachableroots2` from /// `mercurial.cext.parsers` does to obtain the same results. /// /// - first, we climb up the DAG from `heads` in topological order, keeping /// them in the vector `heads_ancestors` vector, and adding any element of /// `roots` we find among them to the resulting range. /// - Then, we iterate on that recorded vector so that a revision is always /// emitted after its parents and add all revisions whose parents are already /// in the range to the results. /// /// # Performance notes /// /// The main difference with the C implementation is that /// the latter uses a flat array with bit flags, instead of complex structures /// like `HashSet`, making it faster in most scenarios. In theory, it's /// possible that the present implementation could be more memory efficient /// for very large repositories with many branches. pub fn range( graph: &(impl Graph + Clone), roots: impl IntoIterator<Item = Revision>, heads: impl IntoIterator<Item = Revision>, ) -> Result<BTreeSet<Revision>, GraphError> { let mut range = BTreeSet::new(); let roots: HashSet<Revision> = roots.into_iter().collect(); let min_root: Revision = match roots.iter().cloned().min() { None => { return Ok(range); } Some(r) => r, }; // Internally, AncestorsIterator currently maintains a `HashSet` // of all seen revision, which is also what we record, albeit in an ordered // way. There's room for improvement on this duplication. let ait = AncestorsIterator::new(graph.clone(), heads, min_root, true)?; let mut heads_ancestors: Vec<Revision> = Vec::new(); for revres in ait { let rev = revres?; if roots.contains(&rev) { range.insert(rev); } heads_ancestors.push(rev); } for rev in heads_ancestors.into_iter().rev() { for parent in graph.parents(rev)?.iter() { if *parent != NULL_REVISION && range.contains(parent) { range.insert(rev); } } } Ok(range) } #[cfg(test)] mod tests { use super::*; use crate::{testing::SampleGraph, BaseRevision}; /// Apply `retain_heads()` to the given slice and return as a sorted `Vec` fn retain_heads_sorted( graph: &impl Graph, revs: &[BaseRevision], ) -> Result<Vec<Revision>, GraphError> { let mut revs: HashSet<Revision> = revs.iter().cloned().map(Revision).collect(); retain_heads(graph, &mut revs)?; let mut as_vec: Vec<Revision> = revs.iter().cloned().collect(); as_vec.sort_unstable(); Ok(as_vec) } #[test] fn test_retain_heads() -> Result<(), GraphError> { assert_eq!(retain_heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]); assert_eq!( retain_heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?, vec![1, 6, 12] ); assert_eq!( retain_heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?, vec![3, 5, 8, 9] ); Ok(()) } /// Apply `heads()` to the given slice and return as a sorted `Vec` fn heads_sorted( graph: &impl Graph, revs: &[BaseRevision], ) -> Result<Vec<Revision>, GraphError> { let iter_revs: Vec<_> = revs.iter().cloned().map(Revision).collect(); let heads = heads(graph, iter_revs.iter())?; let mut as_vec: Vec<Revision> = heads.iter().cloned().collect(); as_vec.sort_unstable(); Ok(as_vec) } #[test] fn test_heads() -> Result<(), GraphError> { assert_eq!(heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]); assert_eq!( heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?, vec![1, 6, 12] ); assert_eq!( heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?, vec![3, 5, 8, 9] ); Ok(()) } /// Apply `roots()` and sort the result for easier comparison fn roots_sorted( graph: &impl Graph, revs: &[BaseRevision], ) -> Result<Vec<Revision>, GraphError> { let set: HashSet<_> = revs.iter().cloned().map(Revision).collect(); let mut as_vec = roots(graph, &set)?; as_vec.sort_unstable(); Ok(as_vec) } #[test] fn test_roots() -> Result<(), GraphError> { assert_eq!(roots_sorted(&SampleGraph, &[4, 5, 6])?, vec![4]); assert_eq!( roots_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?, vec![0, 4, 12] ); assert_eq!( roots_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?, vec![1, 8] ); Ok(()) } /// Apply `range()` and convert the result into a Vec for easier comparison fn range_vec( graph: impl Graph + Clone, roots: &[BaseRevision], heads: &[BaseRevision], ) -> Result<Vec<Revision>, GraphError> { range( &graph, roots.iter().cloned().map(Revision), heads.iter().cloned().map(Revision), ) .map(|bs| bs.into_iter().collect()) } #[test] fn test_range() -> Result<(), GraphError> { assert_eq!(range_vec(SampleGraph, &[0], &[4])?, vec![0, 1, 2, 4]); assert_eq!( range_vec(SampleGraph, &[0], &[8])?, Vec::<Revision>::new() ); assert_eq!( range_vec(SampleGraph, &[5, 6], &[10, 11, 13])?, vec![5, 10] ); assert_eq!( range_vec(SampleGraph, &[5, 6], &[10, 12])?, vec![5, 6, 9, 10, 12] ); Ok(()) } }