mercurial/py3kcompat.py
author Martin von Zweigbergk <martinvonz@google.com>
Thu, 19 Mar 2015 11:08:42 -0700
changeset 24401 e6e023d57e94
parent 21292 a7a9d84f5e4a
child 27486 5bfd01a3c2a9
permissions -rw-r--r--
treemanifest: create treemanifest class There are a number of problems with large and flat manifests. Copying from http://mercurial.selenic.com/wiki/ManifestShardingPlan: * manifest too large for RAM * manifest resolution too much CPU (long delta chains) * committing is slow because entire manifest has to be hashed * impossible for narrow clone to leave out part of manifest as all is needed to calculate new hash * diffing two revisions involves traversing entire subdirectories even if identical This is a first step in a series introducing a manifest revlog per directory. This change adds a new manifest class: treemanifest, which is a tree where each node has a dict of files (nodeids), a dict of flags, and a dict of subdirectories (treemanifests). So far, it behaves just like manifestdict, but it will later help us write one manifest revlog per directory. The new class is still unused; it will be used after the next change. The code is not yet optimized. Running with it (see below) makes most or all operations slower. Once we start storing manifest revlogs for every directory, it should be possible to make many of these operations much faster. The fastdelta() optimization has been intentionally not implemented for the treemanifests. We can implement it later if necessary. All tests pass when run with the following patch (and without, of couse): --- a/mercurial/manifest.py Thu Mar 19 11:08:42 2015 -0700 +++ b/mercurial/manifest.py Thu Mar 19 11:15:50 2015 -0700 @@ -596,7 +596,7 @@ class manifest(revlog.revlog): return None, None def add(self, m, transaction, link, p1, p2, added, removed): - if p1 in self._mancache: + if False and p1 in self._mancache: # If our first parent is in the manifest cache, we can # compute a delta here using properties we know about the # manifest up-front, which may save time later for the @@ -626,3 +626,5 @@ class manifest(revlog.revlog): self._mancache[n] = (m, arraytext) return n + +manifestdict = treemanifest

# py3kcompat.py - compatibility definitions for running hg in py3k
#
# Copyright 2010 Renato Cunha <renatoc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

import builtins

from numbers import Number

def bytesformatter(format, args):
    '''Custom implementation of a formatter for bytestrings.

    This function currently relies on the string formatter to do the
    formatting and always returns bytes objects.

    >>> bytesformatter(20, 10)
    0
    >>> bytesformatter('unicode %s, %s!', ('string', 'foo'))
    b'unicode string, foo!'
    >>> bytesformatter(b'test %s', 'me')
    b'test me'
    >>> bytesformatter('test %s', 'me')
    b'test me'
    >>> bytesformatter(b'test %s', b'me')
    b'test me'
    >>> bytesformatter('test %s', b'me')
    b'test me'
    >>> bytesformatter('test %d: %s', (1, b'result'))
    b'test 1: result'
    '''
    # The current implementation just converts from bytes to unicode, do
    # what's needed and then convert the results back to bytes.
    # Another alternative is to use the Python C API implementation.
    if isinstance(format, Number):
        # If the fixer erroneously passes a number remainder operation to
        # bytesformatter, we just return the correct operation
        return format % args
    if isinstance(format, bytes):
        format = format.decode('utf-8', 'surrogateescape')
    if isinstance(args, bytes):
        args = args.decode('utf-8', 'surrogateescape')
    if isinstance(args, tuple):
        newargs = []
        for arg in args:
            if isinstance(arg, bytes):
                arg = arg.decode('utf-8', 'surrogateescape')
            newargs.append(arg)
        args = tuple(newargs)
    ret = format % args
    return ret.encode('utf-8', 'surrogateescape')
builtins.bytesformatter = bytesformatter

origord = builtins.ord
def fakeord(char):
    if isinstance(char, int):
        return char
    return origord(char)
builtins.ord = fakeord

if __name__ == '__main__':
    import doctest
    doctest.testmod()