view tests/test-ancestor.py @ 46607:e9901d01d135

revlog: add a mechanism to verify expected file position before appending If someone uses `hg debuglocks`, or some non-hg process writes to the .hg directory without respecting the locks, or if the repo's on a networked filesystem, it's possible for the revlog code to write out corrupted data. The form of this corruption can vary depending on what data was written and how that happened. We are in the "networked filesystem" case (though I've had users also do this to themselves with the "`hg debuglocks`" scenario), and most often see this with the changelog. What ends up happening is we produce two items (let's call them rev1 and rev2) in the .i file that have the same linkrev, baserev, and offset into the .d file, while the data in the .d file is appended properly. rev2's compressed_size is accurate for rev2, but when we go to decompress the data in the .d file, we use the offset that's recorded in the index file, which is the same as rev1, and attempt to decompress rev2.compressed_size bytes of rev1's data. This usually does not succeed. :) When using inline data, this also fails, though I haven't investigated why too closely. This shows up as a "patch decode" error. I believe what's happening there is that we're basically ignoring the offset field, getting the data properly, but since baserev != rev, it thinks this is a delta based on rev (instead of a full text) and can't actually apply it as such. For now, I'm going to make this an optional component and default it to entirely off. I may increase the default severity of this in the future, once I've enabled it for my users and we gain more experience with it. Luckily, most of my users have a versioned filesystem and can roll back to before the corruption has been written, it's just a hassle to do so and not everyone knows how (so it's a support burden). Users on other filesystems will not have that luxury, and this can cause them to have a corrupted repository that they are unlikely to know how to resolve, and they'll see this as a data-loss event. Refusing to create the corruption is a much better user experience. This mechanism is not perfect. There may be false-negatives (racy writes that are not detected). There should not be any false-positives (non-racy writes that are detected as such). This is not a mechanism that makes putting a repo on a networked filesystem "safe" or "supported", just *less* likely to cause corruption. Differential Revision: https://phab.mercurial-scm.org/D9952
author Kyle Lippincott <spectral@google.com>
date Wed, 03 Feb 2021 16:33:10 -0800
parents 89a2afe31e82
children 6000f5b25c9b
line wrap: on
line source

from __future__ import absolute_import, print_function

import binascii
import getopt
import math
import os
import random
import sys
import time

from mercurial.node import nullrev
from mercurial import (
    ancestor,
    debugcommands,
    hg,
    pycompat,
    ui as uimod,
    util,
)

if pycompat.ispy3:
    long = int
    xrange = range


def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7):
    """nodes: total number of nodes in the graph
    rootprob: probability that a new node (not 0) will be a root
    mergeprob: probability that, excluding a root a node will be a merge
    prevprob: probability that p1 will be the previous node

    return value is a graph represented as an adjacency list.
    """
    graph = [None] * nodes
    for i in xrange(nodes):
        if i == 0 or rng.random() < rootprob:
            graph[i] = [nullrev]
        elif i == 1:
            graph[i] = [0]
        elif rng.random() < mergeprob:
            if i == 2 or rng.random() < prevprob:
                # p1 is prev
                p1 = i - 1
            else:
                p1 = rng.randrange(i - 1)
            p2 = rng.choice(list(range(0, p1)) + list(range(p1 + 1, i)))
            graph[i] = [p1, p2]
        elif rng.random() < prevprob:
            graph[i] = [i - 1]
        else:
            graph[i] = [rng.randrange(i - 1)]

    return graph


def buildancestorsets(graph):
    ancs = [None] * len(graph)
    for i in xrange(len(graph)):
        ancs[i] = {i}
        if graph[i] == [nullrev]:
            continue
        for p in graph[i]:
            ancs[i].update(ancs[p])
    return ancs


class naiveincrementalmissingancestors(object):
    def __init__(self, ancs, bases):
        self.ancs = ancs
        self.bases = set(bases)

    def addbases(self, newbases):
        self.bases.update(newbases)

    def removeancestorsfrom(self, revs):
        for base in self.bases:
            if base != nullrev:
                revs.difference_update(self.ancs[base])
        revs.discard(nullrev)

    def missingancestors(self, revs):
        res = set()
        for rev in revs:
            if rev != nullrev:
                res.update(self.ancs[rev])
        for base in self.bases:
            if base != nullrev:
                res.difference_update(self.ancs[base])
        return sorted(res)


def test_missingancestors(seed, rng):
    # empirically observed to take around 1 second
    graphcount = 100
    testcount = 10
    inccount = 10
    nerrs = [0]
    # the default mu and sigma give us a nice distribution of mostly
    # single-digit counts (including 0) with some higher ones
    def lognormrandom(mu, sigma):
        return int(math.floor(rng.lognormvariate(mu, sigma)))

    def samplerevs(nodes, mu=1.1, sigma=0.8):
        count = min(lognormrandom(mu, sigma), len(nodes))
        return rng.sample(nodes, count)

    def err(seed, graph, bases, seq, output, expected):
        if nerrs[0] == 0:
            print('seed:', hex(seed)[:-1], file=sys.stderr)
        if gerrs[0] == 0:
            print('graph:', graph, file=sys.stderr)
        print('* bases:', bases, file=sys.stderr)
        print('* seq: ', seq, file=sys.stderr)
        print('*  output:  ', output, file=sys.stderr)
        print('*  expected:', expected, file=sys.stderr)
        nerrs[0] += 1
        gerrs[0] += 1

    for g in xrange(graphcount):
        graph = buildgraph(rng)
        ancs = buildancestorsets(graph)
        gerrs = [0]
        for _ in xrange(testcount):
            # start from nullrev to include it as a possibility
            graphnodes = range(nullrev, len(graph))
            bases = samplerevs(graphnodes)

            # fast algorithm
            inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases)
            # reference slow algorithm
            naiveinc = naiveincrementalmissingancestors(ancs, bases)
            seq = []
            for _ in xrange(inccount):
                if rng.random() < 0.2:
                    newbases = samplerevs(graphnodes)
                    seq.append(('addbases', newbases))
                    inc.addbases(newbases)
                    naiveinc.addbases(newbases)
                if rng.random() < 0.4:
                    # larger set so that there are more revs to remove from
                    revs = samplerevs(graphnodes, mu=1.5)
                    seq.append(('removeancestorsfrom', revs))
                    hrevs = set(revs)
                    rrevs = set(revs)
                    inc.removeancestorsfrom(hrevs)
                    naiveinc.removeancestorsfrom(rrevs)
                    if hrevs != rrevs:
                        err(
                            seed,
                            graph,
                            bases,
                            seq,
                            sorted(hrevs),
                            sorted(rrevs),
                        )
                else:
                    revs = samplerevs(graphnodes)
                    seq.append(('missingancestors', revs))
                    h = inc.missingancestors(revs)
                    r = naiveinc.missingancestors(revs)
                    if h != r:
                        err(seed, graph, bases, seq, h, r)


# graph is a dict of child->parent adjacency lists for this graph:
# o  13
# |
# | o  12
# | |
# | | o    11
# | | |\
# | | | | o  10
# | | | | |
# | o---+ |  9
# | | | | |
# o | | | |  8
#  / / / /
# | | o |  7
# | | | |
# o---+ |  6
#  / / /
# | | o  5
# | |/
# | o  4
# | |
# o |  3
# | |
# | o  2
# |/
# o  1
# |
# o  0

graph = {
    0: [-1, -1],
    1: [0, -1],
    2: [1, -1],
    3: [1, -1],
    4: [2, -1],
    5: [4, -1],
    6: [4, -1],
    7: [4, -1],
    8: [-1, -1],
    9: [6, 7],
    10: [5, -1],
    11: [3, 7],
    12: [9, -1],
    13: [8, -1],
}


def test_missingancestors_explicit():
    """A few explicit cases, easier to check for catching errors in refactors.

    The bigger graph at the end has been produced by the random generator
    above, and we have some evidence that the other tests don't cover it.
    """
    for i, (bases, revs) in enumerate(
        (
            ({1, 2, 3, 4, 7}, set(xrange(10))),
            ({10}, set({11, 12, 13, 14})),
            ({7}, set({1, 2, 3, 4, 5})),
        )
    ):
        print("%% removeancestorsfrom(), example %d" % (i + 1))
        missanc = ancestor.incrementalmissingancestors(graph.get, bases)
        missanc.removeancestorsfrom(revs)
        print("remaining (sorted): %s" % sorted(list(revs)))

    for i, (bases, revs) in enumerate(
        (
            ({10}, {11}),
            ({11}, {10}),
            ({7}, {9, 11}),
        )
    ):
        print("%% missingancestors(), example %d" % (i + 1))
        missanc = ancestor.incrementalmissingancestors(graph.get, bases)
        print("return %s" % missanc.missingancestors(revs))

    print("% removeancestorsfrom(), bigger graph")
    vecgraph = [
        [-1, -1],
        [0, -1],
        [1, 0],
        [2, 1],
        [3, -1],
        [4, -1],
        [5, 1],
        [2, -1],
        [7, -1],
        [8, -1],
        [9, -1],
        [10, 1],
        [3, -1],
        [12, -1],
        [13, -1],
        [14, -1],
        [4, -1],
        [16, -1],
        [17, -1],
        [18, -1],
        [19, 11],
        [20, -1],
        [21, -1],
        [22, -1],
        [23, -1],
        [2, -1],
        [3, -1],
        [26, 24],
        [27, -1],
        [28, -1],
        [12, -1],
        [1, -1],
        [1, 9],
        [32, -1],
        [33, -1],
        [34, 31],
        [35, -1],
        [36, 26],
        [37, -1],
        [38, -1],
        [39, -1],
        [40, -1],
        [41, -1],
        [42, 26],
        [0, -1],
        [44, -1],
        [45, 4],
        [40, -1],
        [47, -1],
        [36, 0],
        [49, -1],
        [-1, -1],
        [51, -1],
        [52, -1],
        [53, -1],
        [14, -1],
        [55, -1],
        [15, -1],
        [23, -1],
        [58, -1],
        [59, -1],
        [2, -1],
        [61, 59],
        [62, -1],
        [63, -1],
        [-1, -1],
        [65, -1],
        [66, -1],
        [67, -1],
        [68, -1],
        [37, 28],
        [69, 25],
        [71, -1],
        [72, -1],
        [50, 2],
        [74, -1],
        [12, -1],
        [18, -1],
        [77, -1],
        [78, -1],
        [79, -1],
        [43, 33],
        [81, -1],
        [82, -1],
        [83, -1],
        [84, 45],
        [85, -1],
        [86, -1],
        [-1, -1],
        [88, -1],
        [-1, -1],
        [76, 83],
        [44, -1],
        [92, -1],
        [93, -1],
        [9, -1],
        [95, 67],
        [96, -1],
        [97, -1],
        [-1, -1],
    ]
    problem_rev = 28
    problem_base = 70
    # problem_rev is a parent of problem_base, but a faulty implementation
    # could forget to remove it.
    bases = {60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6}
    if problem_rev not in vecgraph[problem_base] or problem_base not in bases:
        print("Conditions have changed")
    missanc = ancestor.incrementalmissingancestors(vecgraph.__getitem__, bases)
    revs = {4, 12, 41, 28, 68, 38, 1, 30, 56, 44}
    missanc.removeancestorsfrom(revs)
    if 28 in revs:
        print("Failed!")
    else:
        print("Ok")


def genlazyancestors(revs, stoprev=0, inclusive=False):
    print(
        (
            "%% lazy ancestor set for %s, stoprev = %s, inclusive = %s"
            % (revs, stoprev, inclusive)
        )
    )
    return ancestor.lazyancestors(
        graph.get, revs, stoprev=stoprev, inclusive=inclusive
    )


def printlazyancestors(s, l):
    print('membership: %r' % [n for n in l if n in s])
    print('iteration:  %r' % list(s))


def test_lazyancestors():
    # Empty revs
    s = genlazyancestors([])
    printlazyancestors(s, [3, 0, -1])

    # Standard example
    s = genlazyancestors([11, 13])
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Standard with ancestry in the initial set (1 is ancestor of 3)
    s = genlazyancestors([1, 3])
    printlazyancestors(s, [1, -1, 0])

    # Including revs
    s = genlazyancestors([11, 13], inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Test with stoprev
    s = genlazyancestors([11, 13], stoprev=6)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
    s = genlazyancestors([11, 13], stoprev=6, inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Test with stoprev >= min(initrevs)
    s = genlazyancestors([11, 13], stoprev=11, inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
    s = genlazyancestors([11, 13], stoprev=12, inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Contiguous chains: 5->4, 2->1 (where 1 is in seen set), 1->0
    s = genlazyancestors([10, 1], inclusive=True)
    printlazyancestors(s, [2, 10, 4, 5, -1, 0, 1])


# The C gca algorithm requires a real repo. These are textual descriptions of
# DAGs that have been known to be problematic, and, optionally, known pairs
# of revisions and their expected ancestor list.
dagtests = [
    (b'+2*2*2/*3/2', {}),
    (b'+3*3/*2*2/*4*4/*4/2*4/2*2', {}),
    (b'+2*2*/2*4*/4*/3*2/4', {(6, 7): [3, 5]}),
]


def test_gca():
    u = uimod.ui.load()
    for i, (dag, tests) in enumerate(dagtests):
        repo = hg.repository(u, b'gca%d' % i, create=1)
        cl = repo.changelog
        if not util.safehasattr(cl.index, 'ancestors'):
            # C version not available
            return

        debugcommands.debugbuilddag(u, repo, dag)
        # Compare the results of the Python and C versions. This does not
        # include choosing a winner when more than one gca exists -- we make
        # sure both return exactly the same set of gcas.
        # Also compare against expected results, if available.
        for a in cl:
            for b in cl:
                cgcas = sorted(cl.index.ancestors(a, b))
                pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b))
                expected = None
                if (a, b) in tests:
                    expected = tests[(a, b)]
                if cgcas != pygcas or (expected and cgcas != expected):
                    print(
                        "test_gca: for dag %s, gcas for %d, %d:" % (dag, a, b)
                    )
                    print("  C returned:      %s" % cgcas)
                    print("  Python returned: %s" % pygcas)
                    if expected:
                        print("  expected:        %s" % expected)


def main():
    seed = None
    opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed='])
    for o, a in opts:
        if o in ('-s', '--seed'):
            seed = long(a, base=0)  # accepts base 10 or 16 strings

    if seed is None:
        try:
            seed = long(binascii.hexlify(os.urandom(16)), 16)
        except AttributeError:
            seed = long(time.time() * 1000)

    rng = random.Random(seed)
    test_missingancestors_explicit()
    test_missingancestors(seed, rng)
    test_lazyancestors()
    test_gca()


if __name__ == '__main__':
    main()