templatekw: rename peerpaths to peerurls per naming convention (BC)
Since each element is called as "url", the template keyword should be named
as "<whatever>urls".
{peerurls} is now stabilized.
from __future__ import absolute_import, print_function
import binascii
import getopt
import math
import os
import random
import sys
import time
from mercurial.node import nullrev
from mercurial import (
ancestor,
debugcommands,
hg,
pycompat,
ui as uimod,
util,
)
if pycompat.ispy3:
long = int
xrange = range
def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7):
'''nodes: total number of nodes in the graph
rootprob: probability that a new node (not 0) will be a root
mergeprob: probability that, excluding a root a node will be a merge
prevprob: probability that p1 will be the previous node
return value is a graph represented as an adjacency list.
'''
graph = [None] * nodes
for i in xrange(nodes):
if i == 0 or rng.random() < rootprob:
graph[i] = [nullrev]
elif i == 1:
graph[i] = [0]
elif rng.random() < mergeprob:
if i == 2 or rng.random() < prevprob:
# p1 is prev
p1 = i - 1
else:
p1 = rng.randrange(i - 1)
p2 = rng.choice(list(range(0, p1)) + list(range(p1 + 1, i)))
graph[i] = [p1, p2]
elif rng.random() < prevprob:
graph[i] = [i - 1]
else:
graph[i] = [rng.randrange(i - 1)]
return graph
def buildancestorsets(graph):
ancs = [None] * len(graph)
for i in xrange(len(graph)):
ancs[i] = {i}
if graph[i] == [nullrev]:
continue
for p in graph[i]:
ancs[i].update(ancs[p])
return ancs
class naiveincrementalmissingancestors(object):
def __init__(self, ancs, bases):
self.ancs = ancs
self.bases = set(bases)
def addbases(self, newbases):
self.bases.update(newbases)
def removeancestorsfrom(self, revs):
for base in self.bases:
if base != nullrev:
revs.difference_update(self.ancs[base])
revs.discard(nullrev)
def missingancestors(self, revs):
res = set()
for rev in revs:
if rev != nullrev:
res.update(self.ancs[rev])
for base in self.bases:
if base != nullrev:
res.difference_update(self.ancs[base])
return sorted(res)
def test_missingancestors(seed, rng):
# empirically observed to take around 1 second
graphcount = 100
testcount = 10
inccount = 10
nerrs = [0]
# the default mu and sigma give us a nice distribution of mostly
# single-digit counts (including 0) with some higher ones
def lognormrandom(mu, sigma):
return int(math.floor(rng.lognormvariate(mu, sigma)))
def samplerevs(nodes, mu=1.1, sigma=0.8):
count = min(lognormrandom(mu, sigma), len(nodes))
return rng.sample(nodes, count)
def err(seed, graph, bases, seq, output, expected):
if nerrs[0] == 0:
print('seed:', hex(seed)[:-1], file=sys.stderr)
if gerrs[0] == 0:
print('graph:', graph, file=sys.stderr)
print('* bases:', bases, file=sys.stderr)
print('* seq: ', seq, file=sys.stderr)
print('* output: ', output, file=sys.stderr)
print('* expected:', expected, file=sys.stderr)
nerrs[0] += 1
gerrs[0] += 1
for g in xrange(graphcount):
graph = buildgraph(rng)
ancs = buildancestorsets(graph)
gerrs = [0]
for _ in xrange(testcount):
# start from nullrev to include it as a possibility
graphnodes = range(nullrev, len(graph))
bases = samplerevs(graphnodes)
# fast algorithm
inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases)
# reference slow algorithm
naiveinc = naiveincrementalmissingancestors(ancs, bases)
seq = []
revs = []
for _ in xrange(inccount):
if rng.random() < 0.2:
newbases = samplerevs(graphnodes)
seq.append(('addbases', newbases))
inc.addbases(newbases)
naiveinc.addbases(newbases)
if rng.random() < 0.4:
# larger set so that there are more revs to remove from
revs = samplerevs(graphnodes, mu=1.5)
seq.append(('removeancestorsfrom', revs))
hrevs = set(revs)
rrevs = set(revs)
inc.removeancestorsfrom(hrevs)
naiveinc.removeancestorsfrom(rrevs)
if hrevs != rrevs:
err(seed, graph, bases, seq, sorted(hrevs),
sorted(rrevs))
else:
revs = samplerevs(graphnodes)
seq.append(('missingancestors', revs))
h = inc.missingancestors(revs)
r = naiveinc.missingancestors(revs)
if h != r:
err(seed, graph, bases, seq, h, r)
# graph is a dict of child->parent adjacency lists for this graph:
# o 13
# |
# | o 12
# | |
# | | o 11
# | | |\
# | | | | o 10
# | | | | |
# | o---+ | 9
# | | | | |
# o | | | | 8
# / / / /
# | | o | 7
# | | | |
# o---+ | 6
# / / /
# | | o 5
# | |/
# | o 4
# | |
# o | 3
# | |
# | o 2
# |/
# o 1
# |
# o 0
graph = {0: [-1], 1: [0], 2: [1], 3: [1], 4: [2], 5: [4], 6: [4],
7: [4], 8: [-1], 9: [6, 7], 10: [5], 11: [3, 7], 12: [9],
13: [8]}
def genlazyancestors(revs, stoprev=0, inclusive=False):
print(("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" %
(revs, stoprev, inclusive)))
return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev,
inclusive=inclusive)
def printlazyancestors(s, l):
print('membership: %r' % [n for n in l if n in s])
print('iteration: %r' % list(s))
def test_lazyancestors():
# Empty revs
s = genlazyancestors([])
printlazyancestors(s, [3, 0, -1])
# Standard example
s = genlazyancestors([11, 13])
printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
# Standard with ancestry in the initial set (1 is ancestor of 3)
s = genlazyancestors([1, 3])
printlazyancestors(s, [1, -1, 0])
# Including revs
s = genlazyancestors([11, 13], inclusive=True)
printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
# Test with stoprev
s = genlazyancestors([11, 13], stoprev=6)
printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
s = genlazyancestors([11, 13], stoprev=6, inclusive=True)
printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
# The C gca algorithm requires a real repo. These are textual descriptions of
# DAGs that have been known to be problematic, and, optionally, known pairs
# of revisions and their expected ancestor list.
dagtests = [
('+2*2*2/*3/2', {}),
('+3*3/*2*2/*4*4/*4/2*4/2*2', {}),
('+2*2*/2*4*/4*/3*2/4', {(6, 7): [3, 5]}),
]
def test_gca():
u = uimod.ui.load()
for i, (dag, tests) in enumerate(dagtests):
repo = hg.repository(u, b'gca%d' % i, create=1)
cl = repo.changelog
if not util.safehasattr(cl.index, 'ancestors'):
# C version not available
return
debugcommands.debugbuilddag(u, repo, dag)
# Compare the results of the Python and C versions. This does not
# include choosing a winner when more than one gca exists -- we make
# sure both return exactly the same set of gcas.
# Also compare against expected results, if available.
for a in cl:
for b in cl:
cgcas = sorted(cl.index.ancestors(a, b))
pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b))
expected = None
if (a, b) in tests:
expected = tests[(a, b)]
if cgcas != pygcas or (expected and cgcas != expected):
print("test_gca: for dag %s, gcas for %d, %d:"
% (dag, a, b))
print(" C returned: %s" % cgcas)
print(" Python returned: %s" % pygcas)
if expected:
print(" expected: %s" % expected)
def main():
seed = None
opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed='])
for o, a in opts:
if o in ('-s', '--seed'):
seed = long(a, base=0) # accepts base 10 or 16 strings
if seed is None:
try:
seed = long(binascii.hexlify(os.urandom(16)), 16)
except AttributeError:
seed = long(time.time() * 1000)
rng = random.Random(seed)
test_missingancestors(seed, rng)
test_lazyancestors()
test_gca()
if __name__ == '__main__':
main()