view rust/hg-core/src/dagops.rs @ 48981:f3aafd785e65

filemerge: add support for partial conflict resolution by external tool A common class of merge conflicts is in imports/#includes/etc. It's relatively easy to write a tool that can resolve these conflicts, perhaps by naively just unioning the statements and leaving any cleanup to other tools to do later [1]. Such specialized tools cannot generally resolve all conflicts in a file, of course. Let's therefore call them "partial merge tools". Note that the internal simplemerge algorithm is such a partial merge tool - one that only resolves trivial "conflicts" where one side is unchanged or both sides change in the same way. One can also imagine having smarter language-aware partial tools that merge the AST. It may be useful for such tools to interactively let the user resolve any conflicts it can't resolve itself. However, having the option of implementing it as a partial merge tool means that the developer doesn't *need* to create a UI for it. Instead, the user can resolve any remaining conflicts with their regular merge tool (e.g. `:merge3` or `meld). We don't currently have a way to let the user define such partial merge tools. That's what this patch addresses. It lets the user configure partial merge tools to run. Each tool can be configured to run only on files matching certain patterns (e.g. "*.py"). The tool takes three inputs (local, base, other) and resolves conflicts by updating these in place. For example, let's say the inputs are these: base: ``` import sys def main(): print('Hello') ``` local: ``` import os import sys def main(): print('Hi') ``` other: ``` import re import sys def main(): print('Howdy') ``` A partial merge tool could now resolve the conflicting imports by replacing the import statements in *all* files by the following snippet, while leaving the remainder of the files unchanged. ``` import os import re import sys ``` As a result, simplemerge and any regular merge tool that runs after the partial merge tool(s) will consider the imports to be non-conflicting and will only present the conflict in `main()` to the user. Differential Revision: https://phab.mercurial-scm.org/D12356
author Martin von Zweigbergk <martinvonz@google.com>
date Tue, 18 Jan 2022 13:05:21 -0800
parents 26114bd6ec60
children e98fd81bb151
line wrap: on
line source

// dagops.rs
//
// Copyright 2019 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.

//! Miscellaneous DAG operations
//!
//! # Terminology
//! - By *relative heads* of a collection of revision numbers (`Revision`), we
//!   mean those revisions that have no children among the collection.
//! - Similarly *relative roots* of a collection of `Revision`, we mean those
//!   whose parents, if any, don't belong to the collection.
use super::{Graph, GraphError, Revision, NULL_REVISION};
use crate::ancestors::AncestorsIterator;
use std::collections::{BTreeSet, HashSet};

fn remove_parents<S: std::hash::BuildHasher>(
    graph: &impl Graph,
    rev: Revision,
    set: &mut HashSet<Revision, S>,
) -> Result<(), GraphError> {
    for parent in graph.parents(rev)?.iter() {
        if *parent != NULL_REVISION {
            set.remove(parent);
        }
    }
    Ok(())
}

/// Relative heads out of some revisions, passed as an iterator.
///
/// These heads are defined as those revisions that have no children
/// among those emitted by the iterator.
///
/// # Performance notes
/// Internally, this clones the iterator, and builds a `HashSet` out of it.
///
/// This function takes an `Iterator` instead of `impl IntoIterator` to
/// guarantee that cloning the iterator doesn't result in cloning the full
/// construct it comes from.
pub fn heads<'a>(
    graph: &impl Graph,
    iter_revs: impl Clone + Iterator<Item = &'a Revision>,
) -> Result<HashSet<Revision>, GraphError> {
    let mut heads: HashSet<Revision> = iter_revs.clone().cloned().collect();
    heads.remove(&NULL_REVISION);
    for rev in iter_revs {
        if *rev != NULL_REVISION {
            remove_parents(graph, *rev, &mut heads)?;
        }
    }
    Ok(heads)
}

/// Retain in `revs` only its relative heads.
///
/// This is an in-place operation, so that control of the incoming
/// set is left to the caller.
/// - a direct Python binding would probably need to build its own `HashSet`
///   from an incoming iterable, even if its sole purpose is to extract the
///   heads.
/// - a Rust caller can decide whether cloning beforehand is appropriate
///
/// # Performance notes
/// Internally, this function will store a full copy of `revs` in a `Vec`.
pub fn retain_heads<S: std::hash::BuildHasher>(
    graph: &impl Graph,
    revs: &mut HashSet<Revision, S>,
) -> Result<(), GraphError> {
    revs.remove(&NULL_REVISION);
    // we need to construct an iterable copy of revs to avoid itering while
    // mutating
    let as_vec: Vec<Revision> = revs.iter().cloned().collect();
    for rev in as_vec {
        if rev != NULL_REVISION {
            remove_parents(graph, rev, revs)?;
        }
    }
    Ok(())
}

/// Roots of `revs`, passed as a `HashSet`
///
/// They are returned in arbitrary order
pub fn roots<G: Graph, S: std::hash::BuildHasher>(
    graph: &G,
    revs: &HashSet<Revision, S>,
) -> Result<Vec<Revision>, GraphError> {
    let mut roots: Vec<Revision> = Vec::new();
    for rev in revs {
        if graph
            .parents(*rev)?
            .iter()
            .filter(|p| **p != NULL_REVISION)
            .all(|p| !revs.contains(p))
        {
            roots.push(*rev);
        }
    }
    Ok(roots)
}

/// Compute the topological range between two collections of revisions
///
/// This is equivalent to the revset `<roots>::<heads>`.
///
/// Currently, the given `Graph` has to implement `Clone`, which means
/// actually cloning just a reference-counted Python pointer if
/// it's passed over through `rust-cpython`. This is due to the internal
/// use of `AncestorsIterator`
///
/// # Algorithmic details
///
/// This is a two-pass swipe inspired from what `reachableroots2` from
/// `mercurial.cext.parsers` does to obtain the same results.
///
/// - first, we climb up the DAG from `heads` in topological order, keeping
///   them in the vector `heads_ancestors` vector, and adding any element of
///   `roots` we find among them to the resulting range.
/// - Then, we iterate on that recorded vector so that a revision is always
///   emitted after its parents and add all revisions whose parents are already
///   in the range to the results.
///
/// # Performance notes
///
/// The main difference with the C implementation is that
/// the latter uses a flat array with bit flags, instead of complex structures
/// like `HashSet`, making it faster in most scenarios. In theory, it's
/// possible that the present implementation could be more memory efficient
/// for very large repositories with many branches.
pub fn range(
    graph: &(impl Graph + Clone),
    roots: impl IntoIterator<Item = Revision>,
    heads: impl IntoIterator<Item = Revision>,
) -> Result<BTreeSet<Revision>, GraphError> {
    let mut range = BTreeSet::new();
    let roots: HashSet<Revision> = roots.into_iter().collect();
    let min_root: Revision = match roots.iter().cloned().min() {
        None => {
            return Ok(range);
        }
        Some(r) => r,
    };

    // Internally, AncestorsIterator currently maintains a `HashSet`
    // of all seen revision, which is also what we record, albeit in an ordered
    // way. There's room for improvement on this duplication.
    let ait = AncestorsIterator::new(graph.clone(), heads, min_root, true)?;
    let mut heads_ancestors: Vec<Revision> = Vec::new();
    for revres in ait {
        let rev = revres?;
        if roots.contains(&rev) {
            range.insert(rev);
        }
        heads_ancestors.push(rev);
    }

    for rev in heads_ancestors.into_iter().rev() {
        for parent in graph.parents(rev)?.iter() {
            if *parent != NULL_REVISION && range.contains(parent) {
                range.insert(rev);
            }
        }
    }
    Ok(range)
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::testing::SampleGraph;

    /// Apply `retain_heads()` to the given slice and return as a sorted `Vec`
    fn retain_heads_sorted(
        graph: &impl Graph,
        revs: &[Revision],
    ) -> Result<Vec<Revision>, GraphError> {
        let mut revs: HashSet<Revision> = revs.iter().cloned().collect();
        retain_heads(graph, &mut revs)?;
        let mut as_vec: Vec<Revision> = revs.iter().cloned().collect();
        as_vec.sort();
        Ok(as_vec)
    }

    #[test]
    fn test_retain_heads() -> Result<(), GraphError> {
        assert_eq!(retain_heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
        assert_eq!(
            retain_heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
            vec![1, 6, 12]
        );
        assert_eq!(
            retain_heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
            vec![3, 5, 8, 9]
        );
        Ok(())
    }

    /// Apply `heads()` to the given slice and return as a sorted `Vec`
    fn heads_sorted(
        graph: &impl Graph,
        revs: &[Revision],
    ) -> Result<Vec<Revision>, GraphError> {
        let heads = heads(graph, revs.iter())?;
        let mut as_vec: Vec<Revision> = heads.iter().cloned().collect();
        as_vec.sort();
        Ok(as_vec)
    }

    #[test]
    fn test_heads() -> Result<(), GraphError> {
        assert_eq!(heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
        assert_eq!(
            heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
            vec![1, 6, 12]
        );
        assert_eq!(
            heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
            vec![3, 5, 8, 9]
        );
        Ok(())
    }

    /// Apply `roots()` and sort the result for easier comparison
    fn roots_sorted(
        graph: &impl Graph,
        revs: &[Revision],
    ) -> Result<Vec<Revision>, GraphError> {
        let set: HashSet<_> = revs.iter().cloned().collect();
        let mut as_vec = roots(graph, &set)?;
        as_vec.sort();
        Ok(as_vec)
    }

    #[test]
    fn test_roots() -> Result<(), GraphError> {
        assert_eq!(roots_sorted(&SampleGraph, &[4, 5, 6])?, vec![4]);
        assert_eq!(
            roots_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
            vec![0, 4, 12]
        );
        assert_eq!(
            roots_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
            vec![1, 8]
        );
        Ok(())
    }

    /// Apply `range()` and convert the result into a Vec for easier comparison
    fn range_vec(
        graph: impl Graph + Clone,
        roots: &[Revision],
        heads: &[Revision],
    ) -> Result<Vec<Revision>, GraphError> {
        range(&graph, roots.iter().cloned(), heads.iter().cloned())
            .map(|bs| bs.into_iter().collect())
    }

    #[test]
    fn test_range() -> Result<(), GraphError> {
        assert_eq!(range_vec(SampleGraph, &[0], &[4])?, vec![0, 1, 2, 4]);
        assert_eq!(range_vec(SampleGraph, &[0], &[8])?, vec![]);
        assert_eq!(
            range_vec(SampleGraph, &[5, 6], &[10, 11, 13])?,
            vec![5, 10]
        );
        assert_eq!(
            range_vec(SampleGraph, &[5, 6], &[10, 12])?,
            vec![5, 6, 9, 10, 12]
        );
        Ok(())
    }
}