Mercurial > hg
view mercurial/hbisect.py @ 9615:f51d1822d6fd
setup: refactor the version string to a subset of tag+tagdist-hash+date
Here is an array summarizing the mercurial version string:
[A] [B] [C] [D]
[1] clone tag clean => tag
[2] clone hash clean => latesttag+latesttagdistance-hash
[3] clone tag dirty => tag+date
[4] clone hash dirty => latesttag+latesttagdistance-hash+date
[5] archive tag clean => tag
[6] archive hash clean => latesttag+latesttagdistance-hash
Column [A]: Mercurial built from an hg *archive* or hg *clone* working directory
Column [B]: revision built has a *tag* or else default to the SHA1 *hash*
Column [C]: working tree *clean* or *dirty*
Column [D]: Mercurial version string
Over the previous version:
- row [5] did return just the node hash, now it returns the tag
- prepend the latest tag and the distance to it to rows [2][4][6]
- append also the date to row [3]; previously, it was just the tag
- the version string is with an empty string to avoid possible TypeError
exceptions during string manipulations
- factorize the function to run hg commands; remove the error message as it is
no more specific to the function.
This scheme enables to have first part of the version strings that can be
compared, whether it has been built from a tagged or untagged revision.
The second part of the version adds a hash for untagged revisions and today's
date if the working tree has local modifications.
As the version string does not contain spaces or special characters, it should
not break script parsing the 'hg version' command and should be usable for use
in file names.
The new code also ensure that the version string has exactly the same version
string, whether it has been built from an archive or from a clone.
author | Gilles Moris <gilles.moris@free.fr> |
---|---|
date | Sun, 18 Oct 2009 14:35:36 +0200 |
parents | 0491be4448bf |
children | 25e572394f5c |
line wrap: on
line source
# changelog bisection for mercurial # # Copyright 2007 Matt Mackall # Copyright 2005, 2006 Benoit Boissinot <benoit.boissinot@ens-lyon.org> # # Inspired by git bisect, extension skeleton taken from mq.py. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2, incorporated herein by reference. import os from i18n import _ from node import short, hex import util def bisect(changelog, state): """find the next node (if any) for testing during a bisect search. returns a (nodes, number, good) tuple. 'nodes' is the final result of the bisect if 'number' is 0. Otherwise 'number' indicates the remaining possible candidates for the search and 'nodes' contains the next bisect target. 'good' is True if bisect is searching for a first good changeset, False if searching for a first bad one. """ clparents = changelog.parentrevs skip = set([changelog.rev(n) for n in state['skip']]) def buildancestors(bad, good): # only the earliest bad revision matters badrev = min([changelog.rev(n) for n in bad]) goodrevs = [changelog.rev(n) for n in good] goodrev = min(goodrevs) # build visit array ancestors = [None] * (len(changelog) + 1) # an extra for [-1] # set nodes descended from goodrev ancestors[goodrev] = [] for rev in xrange(goodrev + 1, len(changelog)): for prev in clparents(rev): if ancestors[prev] == []: ancestors[rev] = [] # clear good revs from array for node in goodrevs: ancestors[node] = None for rev in xrange(len(changelog), -1, -1): if ancestors[rev] is None: for prev in clparents(rev): ancestors[prev] = None if ancestors[badrev] is None: return badrev, None return badrev, ancestors good = 0 badrev, ancestors = buildancestors(state['bad'], state['good']) if not ancestors: # looking for bad to good transition? good = 1 badrev, ancestors = buildancestors(state['good'], state['bad']) bad = changelog.node(badrev) if not ancestors: # now we're confused raise util.Abort(_("Inconsistent state, %s:%s is good and bad") % (badrev, short(bad))) # build children dict children = {} visit = [badrev] candidates = [] while visit: rev = visit.pop(0) if ancestors[rev] == []: candidates.append(rev) for prev in clparents(rev): if prev != -1: if prev in children: children[prev].append(rev) else: children[prev] = [rev] visit.append(prev) candidates.sort() # have we narrowed it down to one entry? # or have all other possible candidates besides 'bad' have been skipped? tot = len(candidates) unskipped = [c for c in candidates if (c not in skip) and (c != badrev)] if tot == 1 or not unskipped: return ([changelog.node(rev) for rev in candidates], 0, good) perfect = tot // 2 # find the best node to test best_rev = None best_len = -1 poison = set() for rev in candidates: if rev in poison: # poison children poison.update(children.get(rev, [])) continue a = ancestors[rev] or [rev] ancestors[rev] = None x = len(a) # number of ancestors y = tot - x # number of non-ancestors value = min(x, y) # how good is this test? if value > best_len and rev not in skip: best_len = value best_rev = rev if value == perfect: # found a perfect candidate? quit early break if y < perfect and rev not in skip: # all downhill from here? # poison children poison.update(children.get(rev, [])) continue for c in children.get(rev, []): if ancestors[c]: ancestors[c] = list(set(ancestors[c] + a)) else: ancestors[c] = a + [c] assert best_rev is not None best_node = changelog.node(best_rev) return ([best_node], tot, good) def load_state(repo): state = {'good': [], 'bad': [], 'skip': []} if os.path.exists(repo.join("bisect.state")): for l in repo.opener("bisect.state"): kind, node = l[:-1].split() node = repo.lookup(node) if kind not in state: raise util.Abort(_("unknown bisect kind %s") % kind) state[kind].append(node) return state def save_state(repo, state): f = repo.opener("bisect.state", "w", atomictemp=True) wlock = repo.wlock() try: for kind in state: for node in state[kind]: f.write("%s %s\n" % (kind, hex(node))) f.rename() finally: wlock.release()