view .hgtags @ 44118:f81c17ec303c

hgdemandimport: apply lazy module loading to sys.meta_path finders Python's `sys.meta_path` finders are the primary objects whose job it is to find a module at import time. When `import` is called, Python iterates objects in this list and calls `o.find_spec(...)` to find a `ModuleSpec` (or None if the module couldn't be found by that finder). If no meta path finder can find a module, import fails. One of the default meta path finders is `PathFinder`. Its job is to import modules from the filesystem and is probably the most important importer. This finder looks at `sys.path` and `sys.path_hooks` to do its job. The `ModuleSpec` returned by `MetaPathImporter.find_spec()` has a `loader` attribute, which defines the concrete module loader to use. `sys.path_hooks` is a hook point for teaching `PathFinder` to instantiate custom loader types. Previously, we injected a custom `sys.path_hook` that told `PathFinder` to wrap the default loaders with a loader that creates a module object that is lazy. This approach worked. But its main limitation was that it only applied to the `PathFinder` meta path importer. There are other meta path importers that are registered. And in the case of PyOxidizer loading modules from memory, `PathFinder` doesn't come into play since PyOxidizer's own meta path importer was handling all imports. This commit changes our approach to lazy module loading by proxying all meta path importers. Specifically, we overload the `find_spec()` method to swap in a wrapped loader on the `ModuleSpec` before it is returned. The end result of this is all meta path importers should be lazy. As much as I would have loved to utilize .__class__ manipulation to achieve this, some meta path importers are implemented in C/Rust in such a way that they cannot be monkeypatched. This is why we use __getattribute__ to define a proxy. Also, this change could theoretically open us up to regressions in meta path importers whose loader is creating module objects which can't be monkeypatched. But I'm not aware of any of these in the wild. So I think we'll be safe. According to hyperfine, this change yields a decent startup time win of 5-6ms: ``` Benchmark #1: ~/.pyenv/versions/3.6.10/bin/python ./hg version Time (mean ± σ): 86.8 ms ± 0.5 ms [User: 78.0 ms, System: 8.7 ms] Range (min … max): 86.0 ms … 89.1 ms 50 runs Time (mean ± σ): 81.1 ms ± 2.7 ms [User: 74.5 ms, System: 6.5 ms] Range (min … max): 77.8 ms … 90.5 ms 50 runs Benchmark #2: ~/.pyenv/versions/3.7.6/bin/python ./hg version Time (mean ± σ): 78.9 ms ± 0.6 ms [User: 70.2 ms, System: 8.7 ms] Range (min … max): 78.1 ms … 81.2 ms 50 runs Time (mean ± σ): 73.4 ms ± 0.6 ms [User: 65.3 ms, System: 8.0 ms] Range (min … max): 72.4 ms … 75.7 ms 50 runs Benchmark #3: ~/.pyenv/versions/3.8.1/bin/python ./hg version Time (mean ± σ): 78.1 ms ± 0.6 ms [User: 70.2 ms, System: 7.9 ms] Range (min … max): 77.4 ms … 80.9 ms 50 runs Time (mean ± σ): 72.1 ms ± 0.4 ms [User: 64.4 ms, System: 7.6 ms] Range (min … max): 71.4 ms … 74.1 ms 50 runs ``` Differential Revision: https://phab.mercurial-scm.org/D7954
author Gregory Szorc <gregory.szorc@gmail.com>
date Mon, 20 Jan 2020 23:51:25 -0800
parents 453c4f07de0f
children 266c42c60183
line wrap: on
line source

d40cc5aacc31ed673d9b5b24f98bee78c283062c 0.4f
1c590d34bf61e2ea12c71738e5a746cd74586157 0.4e
7eca4cfa8aad5fce9a04f7d8acadcd0452e2f34e 0.4d
b4d0c3786ad3e47beacf8412157326a32b6d25a4 0.4c
f40273b0ad7b3a6d3012fd37736d0611f41ecf54 0.5
0a28dfe59f8fab54a5118c5be4f40da34a53cdb7 0.5b
12e0fdbc57a0be78f0e817fd1d170a3615cd35da 0.6
4ccf3de52989b14c3d84e1097f59e39a992e00bd 0.6b
eac9c8efcd9bd8244e72fb6821f769f450457a32 0.6c
979c049974485125e1f9357f6bbe9c1b548a64c3 0.7
3a56574f329a368d645853e0f9e09472aee62349 0.8
6a03cff2b0f5d30281e6addefe96b993582f2eac 0.8.1
35fb62a3a673d5322f6274a44ba6456e5e4b3b37 0.9
2be3001847cb18a23c403439d9e7d0ace30804e9 0.9.1
36a957364b1b89c150f2d0e60a99befe0ee08bd3 0.9.2
27230c29bfec36d5540fbe1c976810aefecfd1d2 0.9.3
fb4b6d5fe100b0886f8bc3d6731ec0e5ed5c4694 0.9.4
23889160905a1b09fffe1c07378e9fc1827606eb 0.9.5
bae2e9c838e90a393bae3973a7850280413e091a 1.0
d5cbbe2c49cee22a9fbeb9ea41daa0ac4e26b846 1.0.1
d2375bbee6d47e62ba8e415c86e83a465dc4dce9 1.0.2
2a67430f92f15ea5159c26b09ec4839a0c549a26 1.1
3773e510d433969e277b1863c317b674cbee2065 1.1.1
11a4eb81fb4f4742451591489e2797dc47903277 1.1.2
11efa41037e280d08cfb07c09ad485df30fb0ea8 1.2
02981000012e3adf40c4849bd7b3d5618f9ce82d 1.2.1
196d40e7c885fa6e95f89134809b3ec7bdbca34b 1.3
3ef6c14a1e8e83a31226f5881b7fe6095bbfa6f6 1.3.1
31ec469f9b556f11819937cf68ee53f2be927ebf 1.4
439d7ea6fe3aa4ab9ec274a68846779153789de9 1.4.1
296a0b14a68621f6990c54fdba0083f6f20935bf 1.4.2
4aa619c4c2c09907034d9824ebb1dd0e878206eb 1.4.3
ff2704a8ded37fbebd8b6eb5ec733731d725da8a 1.5
2b01dab594167bc0dd33331dbaa6dca3dca1b3aa 1.5.1
39f725929f0c48c5fb3b90c071fc3066012456ca 1.5.2
fdcf80f26604f233dc4d8f0a5ef9d7470e317e8a 1.5.3
24fe2629c6fd0c74c90bd066e77387c2b02e8437 1.5.4
f786fc4b8764cd2a5526d259cf2f94d8a66924d9 1.6
bf1774d95bde614af3956d92b20e2a0c68c5fec7 1.6.1
c00f03a4982e467fb6b6bd45908767db6df4771d 1.6.2
ff5cec76b1c5b6be9c3bb923aae8c3c6d079d6b9 1.6.3
93d8bff78c96fe7e33237b257558ee97290048a4 1.6.4
333421b9e0f96c7bc788e5667c146a58a9440a55 1.7
4438875ec01bd0fc32be92b0872eb6daeed4d44f 1.7.1
6aff4f144ad356311318b0011df0bb21f2c97429 1.7.2
e3bf16703e2601de99e563cdb3a5d50b64e6d320 1.7.3
a6c855c32ea081da3c3b8ff628f1847ff271482f 1.7.4
2b2155623ee2559caf288fd333f30475966c4525 1.7.5
2616325766e3504c8ae7c84bd15ee610901fe91d 1.8
aa1f3be38ab127280761889d2dca906ca465b5f4 1.8.1
b032bec2c0a651ca0ddecb65714bfe6770f67d70 1.8.2
3cb1e95676ad089596bd81d0937cad37d6e3b7fb 1.8.3
733af5d9f6b22387913e1d11350fb8cb7c1487dd 1.8.4
de9eb6b1da4fc522b1cab16d86ca166204c24f25 1.9
4a43e23b8c55b4566b8200bf69fe2158485a2634 1.9.1
d629f1e89021103f1753addcef6b310e4435b184 1.9.2
351a9292e430e35766c552066ed3e87c557b803b 1.9.3
384082750f2c51dc917d85a7145748330fa6ef4d 2.0-rc
41453d55b481ddfcc1dacb445179649e24ca861d 2.0
195dbd1cef0c2f9f8bcf4ea303238105f716bda3 2.0.1
6344043924497cd06d781d9014c66802285072e4 2.0.2
db33555eafeaf9df1e18950e29439eaa706d399b 2.1-rc
2aa5b51f310fb3befd26bed99c02267f5c12c734 2.1
53e2cd303ecf8ca7c7eeebd785c34e5ed6b0f4a4 2.1.1
b9bd95e61b49c221c4cca24e6da7c946fc02f992 2.1.2
d9e2f09d5488c395ae9ddbb320ceacd24757e055 2.2-rc
00182b3d087909e3c3ae44761efecdde8f319ef3 2.2
5983de86462c5a9f42a3ad0f5e90ce5b1d221d25 2.2.1
85a358df5bbbe404ca25730c9c459b34263441dc 2.2.2
b013baa3898e117959984fc64c29d8c784d2f28b 2.2.3
a06e2681dd1786e2354d84a5fa9c1c88dd4fa3e0 2.3-rc
7f5094bb3f423fc799e471aac2aee81a7ce57a0b 2.3
072209ae4ddb654eb2d5fd35bff358c738414432 2.3.1
b3f0f9a39c4e1d0250048cd803ab03542d6f140a 2.3.2
d118a4f4fd16d9b558ec3f3e87bfee772861d2b7 2.4-rc
195ad823b5d58c68903a6153a25e3fb4ed25239d 2.4
0c10cf8191469e7c3c8844922e17e71a176cb7cb 2.4.1
a4765077b65e6ae29ba42bab7834717b5072d5ba 2.4.2
f5fbe15ca7449f2c9a3cf817c86d0ae68b307214 2.5-rc
a6088c05e43a8aee0472ca3a4f6f8d7dd914ebbf 2.5
7511d4df752e61fe7ae4f3682e0a0008573b0402 2.5.1
5b7175377babacce80a6c1e12366d8032a6d4340 2.5.2
50c922c1b5145dab8baefefb0437d363b6a6c21c 2.5.3
8a7bd2dccd44ed571afe7424cd7f95594f27c092 2.5.4
292cd385856d98bacb2c3086f8897bc660c2beea 2.6-rc
23f785b38af38d2fca6b8f3db56b8007a84cd73a 2.6
ddc7a6be20212d18f3e27d9d7e6f079a66d96f21 2.6.1
cceaf7af4c9e9e6fa2dbfdcfe9856c5da69c4ffd 2.6.2
009794acc6e37a650f0fae37872e733382ac1c0c 2.6.3
f0d7721d7322dcfb5af33599c2543f27335334bb 2.7-rc
f37b5a17e6a0ee17afde2cdde5393dd74715fb58 2.7
335a558f81dc73afeab4d7be63617392b130117f 2.7.1
e7fa36d2ad3a7944a52dca126458d6f482db3524 2.7.2
1596f2d8f2421314b1ddead8f7d0c91009358994 2.8-rc
d825e4025e39d1c39db943cdc89818abd0a87c27 2.8
209e04a06467e2969c0cc6501335be0406d46ef0 2.8.1
ca387377df7a3a67dbb90b6336b781cdadc3ef41 2.8.2
8862469e16f9236208581b20de5f96bd13cc039d 2.9-rc
3cec5134e9c4bceab6a00c60f52a4f80677a78f2 2.9
b96cb15ec9e04d8ac5ee08b34fcbbe4200588965 2.9.1
3f83fc5cfe715d292069ee8417c83804f6c6c1e4 2.9.2
564f55b251224f16508dd1311452db7780dafe2b 3.0-rc
2195ac506c6ababe86985b932f4948837c0891b5 3.0
269c80ee5b3cb3684fa8edc61501b3506d02eb10 3.0.1
2d8cd3d0e83c7336c0cb45a9f88638363f993848 3.0.2
6c36dc6cd61a0e1b563f1d51e55bdf4dacf12162 3.1-rc
3178e49892020336491cdc6945885c4de26ffa8b 3.1
5dc91146f35369949ea56b40172308158b59063a 3.1.1
f768c888aaa68d12dd7f509dcc7f01c9584357d0 3.1.2
7f8d16af8cae246fa5a48e723d48d58b015aed94 3.2-rc
ced632394371a36953ce4d394f86278ae51a2aae 3.2
643c58303fb0ec020907af28b9e486be299ba043 3.2.1
902554884335e5ca3661d63be9978eb4aec3f68a 3.2.2
6dad422ecc5adb63d9fa649eeb8e05a5f9bc4900 3.2.3
1265a3a71d75396f5d4cf6935ae7d9ba5407a547 3.2.4
db8e3f7948b1fdeb9ad12d448fc3525759908b9f 3.3-rc
fbdd5195528fae4f41feebc1838215c110b25d6a 3.3
5b4ed033390bf6e2879c8f5c28c84e1ee3b87231 3.3.1
07a92bbd02e5e3a625e0820389b47786b02b2cea 3.3.2
2e2e9a0750f91a6fe0ad88e4de34f8efefdcab08 3.3.3
e89f909edffad558b56f4affa8239e4832f88de0 3.4-rc
8cc6036bca532e06681c5a8fa37efaa812de67b5 3.4
ed18f4acf435a2824c6f49fba40f42b9df5da7ad 3.4.1
540cd0ddac49c1125b2e013aa2ff18ecbd4dd954 3.4.2
96a38d44ba093bd1d1ecfd34119e94056030278b 3.5-rc
21aa1c313b05b1a85f8ffa1120d51579ddf6bf24 3.5
1a45e49a6bed023deb229102a8903234d18054d3 3.5.1
9a466b9f9792e3ad7ae3fc6c43c3ff2e136b718d 3.5.2
b66e3ca0b90c3095ea28dfd39aa24247bebf5c20 3.6-rc
47dd34f2e7272be9e3b2a5a83cd0d20be44293f4 3.6
1aa5083cbebbe7575c88f3402ab377539b484897 3.6.1
2d437a0f3355834a9485bbbeb30a52a052c98f19 3.6.2
ea389970c08449440587712117f178d33bab3f1e 3.6.3
158bdc8965720ca4061f8f8d806563cfc7cdb62e 3.7-rc
2408645de650d8a29a6ce9e7dce601d8dd0d1474 3.7
b698abf971e7377d9b7ec7fc8c52df45255b0329 3.7.1
d493d64757eb45ada99fcb3693e479a51b7782da 3.7.2
ae279d4a19e9683214cbd1fe8298cf0b50571432 3.7.3
740156eedf2c450aee58b1a90b0e826f47c5da64 3.8-rc
f85de28eae32e7d3064b1a1321309071bbaaa069 3.8
a56296f55a5e1038ea5016dace2076b693c28a56 3.8.1
aaabed77791a75968a12b8c43ad263631a23ee81 3.8.2
a9764ab80e11bcf6a37255db7dd079011f767c6c 3.8.3
26a5d605b8683a292bb89aea11f37a81b06ac016 3.8.4
519bb4f9d3a47a6e83c2b414d58811ed38f503c2 3.9-rc
299546f84e68dbb9bd026f0f3a974ce4bdb93686 3.9
ccd436f7db6d5d7b9af89715179b911d031d44f1 3.9.1
149433e68974eb5c63ccb03f794d8b57339a80c4 3.9.2
438173c415874f6ac653efc1099dec9c9150e90f 4.0-rc
eab27446995210c334c3d06f1a659e3b9b5da769 4.0
b3b1ae98f6a0e14c1e1ba806a6c18e193b6dae5c 4.0.1
e69874dc1f4e142746ff3df91e678a09c6fc208c 4.0.2
a1dd2c0c479e0550040542e392e87bc91262517e 4.1-rc
e1526da1e6d84e03146151c9b6e6950fe9a83d7d 4.1
25703b624d27e3917d978af56d6ad59331e0464a 4.1.1
ed5b25874d998ababb181a939dd37a16ea644435 4.1.2
77eaf9539499a1b8be259ffe7ada787d07857f80 4.1.3
616e788321cc4ae9975b7f0c54c849f36d82182b 4.2-rc
bb96d4a497432722623ae60d9bc734a1e360179e 4.2
c850f0ed54c1d42f9aa079ad528f8127e5775217 4.2.1
26c49ed51a698ec016d2b4c6b44ca3c3f73cc788 4.2.2
857876ebaed4e315f63157bd157d6ce553c7ab73 4.3-rc
5544af8622863796a0027566f6b646e10d522c4c 4.3
943c91326b23954e6e1c6960d0239511f9530258 4.2.3
3fee7f7d2da04226914c2258cc2884dc27384fd7 4.3.1
920977f72c7b70acfdaf56ab35360584d7845827 4.3.2
2f427b57bf9019c6dc3750baa539dc22c1be50f6 4.3.3
1e2454b60e5936f5e77498cab2648db469504487 4.4-rc
0ccb43d4cf01d013ae05917ec4f305509f851b2d 4.4
cabc840ffdee8a72f3689fb77dd74d04fdc2bc04 4.4.1
a92b9f8e11ba330614cdfd6af0e03b15c1ff3797 4.4.2
27b6df1b5adbdf647cf5c6675b40575e1b197c60 4.5-rc
d334afc585e29577f271c5eda03378736a16ca6b 4.5
369aadf7a3264b03c8b09efce715bc41e6ab4a9b 4.5.1
8bba684efde7f45add05f737952093bb2aa07155 4.5.2
7de7bd407251af2bc98e5b809c8598ee95830daf 4.5.3
ed5448edcbfa747b9154099e18630e49024fd47b 4.6rc0
1ec874717d8a93b19e0d50628443e0ee5efab3a9 4.6rc1
6614cac550aea66d19c601e45efd1b7bd08d7c40 4.6
9c5ced5276d6e7d54f7c3dadf5247b7ee98ec79c 4.6.1
0b63a6743010dfdbf8a8154186e119949bdaa1cc 4.6.2
e90130af47ce8dd53a3109aed9d15876b3e7dee8 4.7rc0
33ac6a72308a215e6086fbced347ec10aa963b0a 4.7
ede3bf31fe63677fdf5bd8db687977d4e3d792ed 4.7.1
5405cb1a79010ac50c58cd84e6f50c4556bf2a4c 4.7.2
956ec6f1320df26f3133ec40f3de866ea0695fd7 4.8rc0
a91a2837150bdcb27ae76b3646e6c93cd6a15904 4.8
1c8c54cf97256f4468da2eb4dbee24f7f3888e71 4.8.1
197f092b2cd9691e2a55d198f717b231af9be6f9 4.8.2
593718ff5844cad7a27ee3eb5adad89ac8550949 4.9rc0
83377b4b4ae0e9a6b8e579f7b0a693b8cf5c3b10 4.9
4ea21df312ec7159c5b3633096b6ecf68750b0dd 4.9.1
4a8d9ed864754837a185a642170cde24392f9abf 5.0rc0
07e479ef7c9639be0029f00e6a722b96dcc05fee 5.0
c3484ddbdb9621256d597ed86b90d229c59c2af9 5.0.1
97ada9b8d51bef24c5cb4cdca4243f0db694ab6e 5.0.2
e386b5f4f8360dbb43a576dd9b1368e386fefa5b 5.1rc0
e91930d712e8507d1bc1b2dffd96c83edc4cbed3 5.1
a4e32fd539ab41489a51b2aa88bda9a73b839562 5.1.1
181e52f2b62f4768aa0d988936c929dc7c4a41a0 5.1.2
59338f9561099de77c684c00f76507f11e46ebe8 5.2rc0
ca3dca416f8d5863ca6f5a4a6a6bb835dcd5feeb 5.2
a50fecefa691c9b72a99e49aa6fe9dd13943c2bf 5.2.1
b4c82b70418022e67cc0e69b1aa3c3aa43aa1d29 5.2.2