view mercurial/lock.py @ 48687:f8f2ecdde4b5

branchmap: skip obsolete revisions while computing heads It's time to make this part of core Mercurial obsolescence-aware. Not considering obsolete revisions when computing heads is clearly what Mercurial should do. But there are a couple of small issues: - Let's say tip of the repo is obsolete. There are two ways of finding tiprev for branchcache (both are in use): looking at input data for update() and looking at computed heads after update(). Previously, repo tip would be tiprev of the branchcache. With this patch, an obsolete revision can no longer be tiprev. And depending on what way we use for finding tiprev (input data vs computed heads) we'll get a different result. This is relevant when recomputing cache key from cache contents, and may lead to updating cache for obsolete revisions multiple times (not from scratch, because it still would be considered valid for a subset of revisions in the repo). - If all commits on a branch are obsolete, the branchcache will include that branch, but the list of heads will be empty (that's why there's now `if not heads` when recomputing tiprev/tipnode from cache contents). Having an entry for every branch is currently required for notify extension (and test-notify.t to pass), because notify doesn't handle revsets in its subscription config very well and will throw an error if e.g. a branch doesn't exist. - Cloning static HTTP repos may try to stat() a non-existent obsstore file. The issue is that we now care about obsolescence during clone, but statichttpvfs doesn't implement a stat method, so a regular vfs.stat() is used, and it assumes that file is local and calls os.stat(). During a clone, we're trying to stat() .hg/store/obsstore, but in static HTTP case we provide a literal URL to the obsstore file on the remote as if it were a local file path. On windows it actually results in a failure in test-static-http.t. The first issue is going to be addressed in a series dedicated to making sure branchcache is properly and timely written on disk (it wasn't perfect even before this patch, but there aren't enough tests to demonstrate that). The second issue will be addressed in a future patch for notify extension that will make it not raise an exception if a branch doesn't exist. And the third one was partially addressed in the previous patch in this series and will be properly fixed in a future patch when this series is accepted. filteredhash() grows a keyword argument to make sure that branchcache is also invalidated when there are new obsolete revisions in its repo view. This way the on-disk cache format is unchanged and compatible between versions (although it will obviously be recomputed when switching versions before/after this patch and the repo has obsolete revisions). There's one test that uses plain `hg up` without arguments while updated to a pruned commit. To make this test pass, simply return current working directory parent. Later in this series this code will be replaced by what prune command does: updating to the closest non-obsolete ancestor. Test changes: test-branch-change.t: update branch head and cache update message. The head of default listed in hg heads is changed because revision 2 was rewritten as 7, and 1 is the closest ancestor on the same branch, so it's the head of default now. The cache invalidation message appears now because of the cache hash change, since we're now accounting for obsolete revisions. Here's some context: "served.hidden" repo filter means everything is visible (no filtered revisions), so before this series branch2-served.hidden file would not contain any cache hash, only revnum and node. Now it also has a hash when there are obsolete changesets in the repo. The command that the message appears for is changing branch of 5 and 6, which are now obsolete, so the cache hash changes. In general, when cache is simply out-of-date, it can be updated using the old version as a base. But if cache hash differs, then the cache for that particular repo filter is recomputed (at least with the current implementation). This is what happens here. test-obsmarker-template.t: the pull reports 2 heads changed, but after that the repo correctly sees only 1. The new message could be better, but it's still an improvement over the previous one where hg pull suggested merging with an obsolete revision. test-obsolete.t: we can see these revisions in hg log --hidden, but they shouldn't be considered heads even with --hidden. test-rebase-obsolete{,2}.t: there were new heads created previously after making new orphan changesets, but they weren't detected. Now we are properly detecting and reporting them. test-rebase-obsolete4.t: there's only one head now because the other head is pruned and was falsely reported before. test-static-http.t: add obsstore to the list of requested files. This file doesn't exist on the remotes, but clients want it anyway (they get 404). This is fine, because there are other nonexistent files that clients request, like .hg/bookmarks or .hg/cache/tags2-served. Differential Revision: https://phab.mercurial-scm.org/D12097
author Anton Shestakov <av6@dwimlabs.net>
date Fri, 07 Jan 2022 11:53:23 +0300
parents d4ba4d51f85f
children 6000f5b25c9b
line wrap: on
line source

# lock.py - simple advisory locking scheme for mercurial
#
# Copyright 2005, 2006 Olivia Mackall <olivia@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import contextlib
import errno
import os
import signal
import socket
import time
import warnings

from .i18n import _
from .pycompat import getattr

from . import (
    encoding,
    error,
    pycompat,
    util,
)

from .utils import procutil


def _getlockprefix():
    """Return a string which is used to differentiate pid namespaces

    It's useful to detect "dead" processes and remove stale locks with
    confidence. Typically it's just hostname. On modern linux, we include an
    extra Linux-specific pid namespace identifier.
    """
    result = encoding.strtolocal(socket.gethostname())
    if pycompat.sysplatform.startswith(b'linux'):
        try:
            result += b'/%x' % os.stat(b'/proc/self/ns/pid').st_ino
        except OSError as ex:
            if ex.errno not in (errno.ENOENT, errno.EACCES, errno.ENOTDIR):
                raise
    return result


@contextlib.contextmanager
def _delayedinterrupt():
    """Block signal interrupt while doing something critical

    This makes sure that the code block wrapped by this context manager won't
    be interrupted.

    For Windows developers: It appears not possible to guard time.sleep()
    from CTRL_C_EVENT, so please don't use time.sleep() to test if this is
    working.
    """
    assertedsigs = []
    blocked = False
    orighandlers = {}

    def raiseinterrupt(num):
        if num == getattr(signal, 'SIGINT', None) or num == getattr(
            signal, 'CTRL_C_EVENT', None
        ):
            raise KeyboardInterrupt
        else:
            raise error.SignalInterrupt

    def catchterm(num, frame):
        if blocked:
            assertedsigs.append(num)
        else:
            raiseinterrupt(num)

    try:
        # save handlers first so they can be restored even if a setup is
        # interrupted between signal.signal() and orighandlers[] =.
        for name in [
            b'CTRL_C_EVENT',
            b'SIGINT',
            b'SIGBREAK',
            b'SIGHUP',
            b'SIGTERM',
        ]:
            num = getattr(signal, name, None)
            if num and num not in orighandlers:
                orighandlers[num] = signal.getsignal(num)
        try:
            for num in orighandlers:
                signal.signal(num, catchterm)
        except ValueError:
            pass  # in a thread? no luck

        blocked = True
        yield
    finally:
        # no simple way to reliably restore all signal handlers because
        # any loops, recursive function calls, except blocks, etc. can be
        # interrupted. so instead, make catchterm() raise interrupt.
        blocked = False
        try:
            for num, handler in orighandlers.items():
                signal.signal(num, handler)
        except ValueError:
            pass  # in a thread?

    # re-raise interrupt exception if any, which may be shadowed by a new
    # interrupt occurred while re-raising the first one
    if assertedsigs:
        raiseinterrupt(assertedsigs[0])


def trylock(ui, vfs, lockname, timeout, warntimeout, *args, **kwargs):
    """return an acquired lock or raise an a LockHeld exception

    This function is responsible to issue warnings and or debug messages about
    the held lock while trying to acquires it."""

    def printwarning(printer, locker):
        """issue the usual "waiting on lock" message through any channel"""
        # show more details for new-style locks
        if b':' in locker:
            host, pid = locker.split(b":", 1)
            msg = _(
                b"waiting for lock on %s held by process %r on host %r\n"
            ) % (
                pycompat.bytestr(l.desc),
                pycompat.bytestr(pid),
                pycompat.bytestr(host),
            )
        else:
            msg = _(b"waiting for lock on %s held by %r\n") % (
                l.desc,
                pycompat.bytestr(locker),
            )
        printer(msg)

    l = lock(vfs, lockname, 0, *args, dolock=False, **kwargs)

    debugidx = 0 if (warntimeout and timeout) else -1
    warningidx = 0
    if not timeout:
        warningidx = -1
    elif warntimeout:
        warningidx = warntimeout

    delay = 0
    while True:
        try:
            l._trylock()
            break
        except error.LockHeld as inst:
            if delay == debugidx:
                printwarning(ui.debug, inst.locker)
            if delay == warningidx:
                printwarning(ui.warn, inst.locker)
            if timeout <= delay:
                raise error.LockHeld(
                    errno.ETIMEDOUT, inst.filename, l.desc, inst.locker
                )
            time.sleep(1)
            delay += 1

    l.delay = delay
    if l.delay:
        if 0 <= warningidx <= l.delay:
            ui.warn(_(b"got lock after %d seconds\n") % l.delay)
        else:
            ui.debug(b"got lock after %d seconds\n" % l.delay)
    if l.acquirefn:
        l.acquirefn()
    return l


class lock(object):
    """An advisory lock held by one process to control access to a set
    of files.  Non-cooperating processes or incorrectly written scripts
    can ignore Mercurial's locking scheme and stomp all over the
    repository, so don't do that.

    Typically used via localrepository.lock() to lock the repository
    store (.hg/store/) or localrepository.wlock() to lock everything
    else under .hg/."""

    # lock is symlink on platforms that support it, file on others.

    # symlink is used because create of directory entry and contents
    # are atomic even over nfs.

    # old-style lock: symlink to pid
    # new-style lock: symlink to hostname:pid

    _host = None

    def __init__(
        self,
        vfs,
        fname,
        timeout=-1,
        releasefn=None,
        acquirefn=None,
        desc=None,
        signalsafe=True,
        dolock=True,
    ):
        self.vfs = vfs
        self.f = fname
        self.held = 0
        self.timeout = timeout
        self.releasefn = releasefn
        self.acquirefn = acquirefn
        self.desc = desc
        if signalsafe:
            self._maybedelayedinterrupt = _delayedinterrupt
        else:
            self._maybedelayedinterrupt = util.nullcontextmanager
        self.postrelease = []
        self.pid = self._getpid()
        if dolock:
            self.delay = self.lock()
            if self.acquirefn:
                self.acquirefn()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, exc_tb):
        success = all(a is None for a in (exc_type, exc_value, exc_tb))
        self.release(success=success)

    def __del__(self):
        if self.held:
            warnings.warn(
                "use lock.release instead of del lock",
                category=DeprecationWarning,
                stacklevel=2,
            )

            # ensure the lock will be removed
            # even if recursive locking did occur
            self.held = 1

        self.release()

    def _getpid(self):
        # wrapper around procutil.getpid() to make testing easier
        return procutil.getpid()

    def lock(self):
        timeout = self.timeout
        while True:
            try:
                self._trylock()
                return self.timeout - timeout
            except error.LockHeld as inst:
                if timeout != 0:
                    time.sleep(1)
                    if timeout > 0:
                        timeout -= 1
                    continue
                raise error.LockHeld(
                    errno.ETIMEDOUT, inst.filename, self.desc, inst.locker
                )

    def _trylock(self):
        if self.held:
            self.held += 1
            return
        if lock._host is None:
            lock._host = _getlockprefix()
        lockname = b'%s:%d' % (lock._host, self.pid)
        retry = 5
        while not self.held and retry:
            retry -= 1
            try:
                with self._maybedelayedinterrupt():
                    self.vfs.makelock(lockname, self.f)
                    self.held = 1
            except (OSError, IOError) as why:
                if why.errno == errno.EEXIST:
                    locker = self._readlock()
                    if locker is None:
                        continue

                    locker = self._testlock(locker)
                    if locker is not None:
                        raise error.LockHeld(
                            errno.EAGAIN,
                            self.vfs.join(self.f),
                            self.desc,
                            locker,
                        )
                else:
                    raise error.LockUnavailable(
                        why.errno, why.strerror, why.filename, self.desc
                    )

        if not self.held:
            # use empty locker to mean "busy for frequent lock/unlock
            # by many processes"
            raise error.LockHeld(
                errno.EAGAIN, self.vfs.join(self.f), self.desc, b""
            )

    def _readlock(self):
        """read lock and return its value

        Returns None if no lock exists, pid for old-style locks, and host:pid
        for new-style locks.
        """
        try:
            return self.vfs.readlock(self.f)
        except (OSError, IOError) as why:
            if why.errno == errno.ENOENT:
                return None
            raise

    def _lockshouldbebroken(self, locker):
        if locker is None:
            return False
        try:
            host, pid = locker.split(b":", 1)
        except ValueError:
            return False
        if host != lock._host:
            return False
        try:
            pid = int(pid)
        except ValueError:
            return False
        if procutil.testpid(pid):
            return False
        return True

    def _testlock(self, locker):
        if not self._lockshouldbebroken(locker):
            return locker

        # if locker dead, break lock.  must do this with another lock
        # held, or can race and break valid lock.
        try:
            with lock(self.vfs, self.f + b'.break', timeout=0):
                locker = self._readlock()
                if not self._lockshouldbebroken(locker):
                    return locker
                self.vfs.unlink(self.f)
        except error.LockError:
            return locker

    def testlock(self):
        """return id of locker if lock is valid, else None.

        If old-style lock, we cannot tell what machine locker is on.
        with new-style lock, if locker is on this machine, we can
        see if locker is alive.  If locker is on this machine but
        not alive, we can safely break lock.

        The lock file is only deleted when None is returned.

        """
        locker = self._readlock()
        return self._testlock(locker)

    def release(self, success=True):
        """release the lock and execute callback function if any

        If the lock has been acquired multiple times, the actual release is
        delayed to the last release call."""
        if self.held > 1:
            self.held -= 1
        elif self.held == 1:
            self.held = 0
            if self._getpid() != self.pid:
                # we forked, and are not the parent
                return
            try:
                if self.releasefn:
                    self.releasefn()
            finally:
                try:
                    self.vfs.unlink(self.f)
                except OSError:
                    pass
            # The postrelease functions typically assume the lock is not held
            # at all.
            for callback in self.postrelease:
                callback(success)
            # Prevent double usage and help clear cycles.
            self.postrelease = None


def release(*locks):
    for lock in locks:
        if lock is not None:
            lock.release()