view mercurial/similar.py @ 32383:f928d53b687c stable

dispatch: setup color before pager for correct console information on windows Before this patch, "hg CMD --pager on" on Windows shows output unintentionally decorated with ANSI color escape sequences, if color mode is "auto". This issue occurs in steps below. 1. dispatch() invokes ui.pager() at detection of "--pager on" 2. stdout of hg process is redirected into stdin of pager process 3. "ui.formatted" = True, because isatty(stdout) is so before (2) 4. color module is loaded for colorization 5. color.w32effects = None, because GetConsoleScreenBufferInfo() fails on stdout redirected at (2) 6. "ansi" color mode is chosen, because of "not w32effects" 7. output is colorized in "ansi" mode because of "ui.formatted" = True Even if "ansi" color mode is chosen, ordinarily redirected stdout makes ui.formatted() return False, and colorization is avoided. But in this issue case, "ui.formatted" = True at (3) forces output to be colorized. For correct console information on win32, it is needed to ensure that color module is loaded before redirection of stdout for pagination. BTW, if any of enabled extensions has "colortable" attribute, this issue is avoided even before this patch, because color module is imported as a part of loading such extension, and extension loading occurs before setting up pager. For example, mq and keyword have "colortable".
author FUJIWARA Katsunori <foozy@lares.dti.ne.jp>
date Tue, 23 May 2017 03:29:23 +0900
parents 985a98c6bad0
children ded48ad55146
line wrap: on
line source

# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

from .i18n import _
from . import (
    bdiff,
    mdiff,
)

def _findexactmatches(repo, added, removed):
    '''find renamed files that have no changes

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after) tuples of exact matches.
    '''
    numfiles = len(added) + len(removed)

    # Build table of removed files: {hash(fctx.data()): [fctx, ...]}.
    # We use hash() to discard fctx.data() from memory.
    hashes = {}
    for i, fctx in enumerate(removed):
        repo.ui.progress(_('searching for exact renames'), i, total=numfiles,
                         unit=_('files'))
        h = hash(fctx.data())
        if h not in hashes:
            hashes[h] = [fctx]
        else:
            hashes[h].append(fctx)

    # For each added file, see if it corresponds to a removed file.
    for i, fctx in enumerate(added):
        repo.ui.progress(_('searching for exact renames'), i + len(removed),
                total=numfiles, unit=_('files'))
        adata = fctx.data()
        h = hash(adata)
        for rfctx in hashes.get(h, []):
            # compare between actual file contents for exact identity
            if adata == rfctx.data():
                yield (rfctx, fctx)
                break

    # Done
    repo.ui.progress(_('searching for exact renames'), None)

def _ctxdata(fctx):
    # lazily load text
    orig = fctx.data()
    return orig, mdiff.splitnewlines(orig)

def _score(fctx, otherdata):
    orig, lines = otherdata
    text = fctx.data()
    # bdiff.blocks() returns blocks of matching lines
    # count the number of bytes in each
    equal = 0
    matches = bdiff.blocks(text, orig)
    for x1, x2, y1, y2 in matches:
        for line in lines[y1:y2]:
            equal += len(line)

    lengths = len(text) + len(orig)
    return equal * 2.0 / lengths

def score(fctx1, fctx2):
    return _score(fctx1, _ctxdata(fctx2))

def _findsimilarmatches(repo, added, removed, threshold):
    '''find potentially renamed files based on similar file content

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after, score) tuples of partial matches.
    '''
    copies = {}
    for i, r in enumerate(removed):
        repo.ui.progress(_('searching for similar files'), i,
                         total=len(removed), unit=_('files'))

        data = None
        for a in added:
            bestscore = copies.get(a, (None, threshold))[1]
            if data is None:
                data = _ctxdata(r)
            myscore = _score(a, data)
            if myscore > bestscore:
                copies[a] = (r, myscore)
    repo.ui.progress(_('searching'), None)

    for dest, v in copies.iteritems():
        source, bscore = v
        yield source, dest, bscore

def _dropempty(fctxs):
    return [x for x in fctxs if x.size() > 0]

def findrenames(repo, added, removed, threshold):
    '''find renamed files -- yields (before, after, score) tuples'''
    wctx = repo[None]
    pctx = wctx.p1()

    # Zero length files will be frequently unrelated to each other, and
    # tracking the deletion/addition of such a file will probably cause more
    # harm than good. We strip them out here to avoid matching them later on.
    addedfiles = _dropempty(wctx[fp] for fp in sorted(added))
    removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx)

    # Find exact matches.
    matchedfiles = set()
    for (a, b) in _findexactmatches(repo, addedfiles, removedfiles):
        matchedfiles.add(b)
        yield (a.path(), b.path(), 1.0)

    # If the user requested similar files to be matched, search for them also.
    if threshold < 1.0:
        addedfiles = [x for x in addedfiles if x not in matchedfiles]
        for (a, b, score) in _findsimilarmatches(repo, addedfiles,
                                                 removedfiles, threshold):
            yield (a.path(), b.path(), score)