view tests/killdaemons.py @ 37048:fc5e261915b9

wireproto: require POST for all HTTPv2 requests Wire protocol version 1 transfers argument data via request headers by default. This has historically caused problems because servers institute limits on the length of individual HTTP headers as well as the total size of all request headers. Mercurial servers can advertise the maximum length of an individual header. But there's no guarantee any intermediate HTTP agents will accept headers up to that length. In the existing wire protocol, server operators typically also key off the HTTP request method to implement authentication. For example, GET requests translate to read-only requests and can be allowed. But read-write commands must use POST and require authentication. This has typically worked because the only wire protocol commands that use POST modify the repo (e.g. the "unbundle" command). There is an experimental feature to enable clients to transmit argument data via POST request bodies. This is technically a better and more robust solution. But we can't enable it by default because of servers assuming POST means write access. In version 2 of the wire protocol, the permissions of a request are encoded in the URL. And with it being a new protocol in a new URL space, we're not constrained by backwards compatibility requirements. This commit adopts the technically superior mechanism of using HTTP request bodies to send argument data by requiring POST for all commands. Strictly speaking, it may be possible to send request bodies on GET requests. But my experience is that not all HTTP stacks support this. POST pretty much always works. Using POST for read-only operations does sacrifice some RESTful design purity. But this API cares about practicality, not about being in Roy T. Fielding's REST ivory tower. There's a chance we may relax this restriction in the future. But for now, I want to see how far we can get with a POST only API. Differential Revision: https://phab.mercurial-scm.org/D2837
author Gregory Szorc <gregory.szorc@gmail.com>
date Tue, 13 Mar 2018 11:57:43 -0700
parents ed1f376090cd
children 89793289c891
line wrap: on
line source

#!/usr/bin/env python

from __future__ import absolute_import
import errno
import os
import signal
import sys
import time

if os.name =='nt':
    import ctypes

    _BOOL = ctypes.c_long
    _DWORD = ctypes.c_ulong
    _UINT = ctypes.c_uint
    _HANDLE = ctypes.c_void_p

    ctypes.windll.kernel32.CloseHandle.argtypes = [_HANDLE]
    ctypes.windll.kernel32.CloseHandle.restype = _BOOL

    ctypes.windll.kernel32.GetLastError.argtypes = []
    ctypes.windll.kernel32.GetLastError.restype = _DWORD

    ctypes.windll.kernel32.OpenProcess.argtypes = [_DWORD, _BOOL, _DWORD]
    ctypes.windll.kernel32.OpenProcess.restype = _HANDLE

    ctypes.windll.kernel32.TerminateProcess.argtypes = [_HANDLE, _UINT]
    ctypes.windll.kernel32.TerminateProcess.restype = _BOOL

    ctypes.windll.kernel32.WaitForSingleObject.argtypes = [_HANDLE, _DWORD]
    ctypes.windll.kernel32.WaitForSingleObject.restype = _DWORD

    def _check(ret, expectederr=None):
        if ret == 0:
            winerrno = ctypes.GetLastError()
            if winerrno == expectederr:
                return True
            raise ctypes.WinError(winerrno)

    def kill(pid, logfn, tryhard=True):
        logfn('# Killing daemon process %d' % pid)
        PROCESS_TERMINATE = 1
        PROCESS_QUERY_INFORMATION = 0x400
        SYNCHRONIZE = 0x00100000
        WAIT_OBJECT_0 = 0
        WAIT_TIMEOUT = 258
        WAIT_FAILED = _DWORD(0xFFFFFFFF).value
        handle = ctypes.windll.kernel32.OpenProcess(
                PROCESS_TERMINATE|SYNCHRONIZE|PROCESS_QUERY_INFORMATION,
                False, pid)
        if handle is None:
            _check(0, 87) # err 87 when process not found
            return # process not found, already finished
        try:
            r = ctypes.windll.kernel32.WaitForSingleObject(handle, 100)
            if r == WAIT_OBJECT_0:
                pass # terminated, but process handle still available
            elif r == WAIT_TIMEOUT:
                _check(ctypes.windll.kernel32.TerminateProcess(handle, -1))
            elif r == WAIT_FAILED:
                _check(0)  # err stored in GetLastError()

            # TODO?: forcefully kill when timeout
            #        and ?shorter waiting time? when tryhard==True
            r = ctypes.windll.kernel32.WaitForSingleObject(handle, 100)
                                                       # timeout = 100 ms
            if r == WAIT_OBJECT_0:
                pass # process is terminated
            elif r == WAIT_TIMEOUT:
                logfn('# Daemon process %d is stuck')
            elif r == WAIT_FAILED:
                _check(0)  # err stored in GetLastError()
        except: #re-raises
            ctypes.windll.kernel32.CloseHandle(handle) # no _check, keep error
            raise
        _check(ctypes.windll.kernel32.CloseHandle(handle))

else:
    def kill(pid, logfn, tryhard=True):
        try:
            os.kill(pid, 0)
            logfn('# Killing daemon process %d' % pid)
            os.kill(pid, signal.SIGTERM)
            if tryhard:
                for i in range(10):
                    time.sleep(0.05)
                    os.kill(pid, 0)
            else:
                time.sleep(0.1)
                os.kill(pid, 0)
            logfn('# Daemon process %d is stuck - really killing it' % pid)
            os.kill(pid, signal.SIGKILL)
        except OSError as err:
            if err.errno != errno.ESRCH:
                raise

def killdaemons(pidfile, tryhard=True, remove=False, logfn=None):
    if not logfn:
        logfn = lambda s: s
    # Kill off any leftover daemon processes
    try:
        pids = []
        with open(pidfile) as fp:
            for line in fp:
                try:
                    pid = int(line)
                    if pid <= 0:
                        raise ValueError
                except ValueError:
                    logfn('# Not killing daemon process %s - invalid pid'
                          % line.rstrip())
                    continue
                pids.append(pid)
        for pid in pids:
            kill(pid, logfn, tryhard)
        if remove:
            os.unlink(pidfile)
    except IOError:
        pass

if __name__ == '__main__':
    if len(sys.argv) > 1:
        path, = sys.argv[1:]
    else:
        path = os.environ["DAEMON_PIDS"]

    killdaemons(path)