Mercurial > hg
view .hgtags @ 18040:fe8caf28d580
strip: make query to get new bookmark target cheaper
The current query to get the new bookmark target for stripped revisions
involves multiple walks up the DAG, and is really expensive, taking over 2.5
seconds on a repository with over 400,000 changesets even if just one
changeset is being stripped.
A slightly simplified version of the current query is
max(heads(::<tostrip> - <tostrip>))
We make two observations here.
1. For any set s, max(heads(s)) == max(s). That is because revision numbers
define a topological order, so that the element with the highest revision
number in s will not have any children in s.
2. For any set s, max(::s - s) == max(parents(s) - s). In other words, the
ancestor of s with the highest revision number not in s is a parent of one
of the revs in s. Why? Because if it were an ancestor but not a parent of s,
it would have a descendant that would be a parent of s. This descendant
would have a higher revision number, leading to a contradiction.
Combining these two observations, we rewrite the revset query as
max(parents(<tostrip>) - <tostrip>)
The time complexity is now linear in the number of changesets being stripped.
For the above repository, the query now takes 0.1 seconds when one changeset
is stripped. This speeds up operations that use repair.strip, like the rebase
and strip commands.
author | Siddharth Agarwal <sid0@fb.com> |
---|---|
date | Wed, 05 Dec 2012 14:33:15 -0800 |
parents | 3960eed34701 |
children | 1b4a78f87eff |
line wrap: on
line source
d40cc5aacc31ed673d9b5b24f98bee78c283062c 0.4f 1c590d34bf61e2ea12c71738e5a746cd74586157 0.4e 7eca4cfa8aad5fce9a04f7d8acadcd0452e2f34e 0.4d b4d0c3786ad3e47beacf8412157326a32b6d25a4 0.4c f40273b0ad7b3a6d3012fd37736d0611f41ecf54 0.5 0a28dfe59f8fab54a5118c5be4f40da34a53cdb7 0.5b 12e0fdbc57a0be78f0e817fd1d170a3615cd35da 0.6 4ccf3de52989b14c3d84e1097f59e39a992e00bd 0.6b eac9c8efcd9bd8244e72fb6821f769f450457a32 0.6c 979c049974485125e1f9357f6bbe9c1b548a64c3 0.7 3a56574f329a368d645853e0f9e09472aee62349 0.8 6a03cff2b0f5d30281e6addefe96b993582f2eac 0.8.1 35fb62a3a673d5322f6274a44ba6456e5e4b3b37 0.9 2be3001847cb18a23c403439d9e7d0ace30804e9 0.9.1 36a957364b1b89c150f2d0e60a99befe0ee08bd3 0.9.2 27230c29bfec36d5540fbe1c976810aefecfd1d2 0.9.3 fb4b6d5fe100b0886f8bc3d6731ec0e5ed5c4694 0.9.4 23889160905a1b09fffe1c07378e9fc1827606eb 0.9.5 bae2e9c838e90a393bae3973a7850280413e091a 1.0 d5cbbe2c49cee22a9fbeb9ea41daa0ac4e26b846 1.0.1 d2375bbee6d47e62ba8e415c86e83a465dc4dce9 1.0.2 2a67430f92f15ea5159c26b09ec4839a0c549a26 1.1 3773e510d433969e277b1863c317b674cbee2065 1.1.1 11a4eb81fb4f4742451591489e2797dc47903277 1.1.2 11efa41037e280d08cfb07c09ad485df30fb0ea8 1.2 02981000012e3adf40c4849bd7b3d5618f9ce82d 1.2.1 196d40e7c885fa6e95f89134809b3ec7bdbca34b 1.3 3ef6c14a1e8e83a31226f5881b7fe6095bbfa6f6 1.3.1 31ec469f9b556f11819937cf68ee53f2be927ebf 1.4 439d7ea6fe3aa4ab9ec274a68846779153789de9 1.4.1 296a0b14a68621f6990c54fdba0083f6f20935bf 1.4.2 4aa619c4c2c09907034d9824ebb1dd0e878206eb 1.4.3 ff2704a8ded37fbebd8b6eb5ec733731d725da8a 1.5 2b01dab594167bc0dd33331dbaa6dca3dca1b3aa 1.5.1 39f725929f0c48c5fb3b90c071fc3066012456ca 1.5.2 fdcf80f26604f233dc4d8f0a5ef9d7470e317e8a 1.5.3 24fe2629c6fd0c74c90bd066e77387c2b02e8437 1.5.4 f786fc4b8764cd2a5526d259cf2f94d8a66924d9 1.6 bf1774d95bde614af3956d92b20e2a0c68c5fec7 1.6.1 c00f03a4982e467fb6b6bd45908767db6df4771d 1.6.2 ff5cec76b1c5b6be9c3bb923aae8c3c6d079d6b9 1.6.3 93d8bff78c96fe7e33237b257558ee97290048a4 1.6.4 333421b9e0f96c7bc788e5667c146a58a9440a55 1.7 4438875ec01bd0fc32be92b0872eb6daeed4d44f 1.7.1 6aff4f144ad356311318b0011df0bb21f2c97429 1.7.2 e3bf16703e2601de99e563cdb3a5d50b64e6d320 1.7.3 a6c855c32ea081da3c3b8ff628f1847ff271482f 1.7.4 2b2155623ee2559caf288fd333f30475966c4525 1.7.5 2616325766e3504c8ae7c84bd15ee610901fe91d 1.8 aa1f3be38ab127280761889d2dca906ca465b5f4 1.8.1 b032bec2c0a651ca0ddecb65714bfe6770f67d70 1.8.2 3cb1e95676ad089596bd81d0937cad37d6e3b7fb 1.8.3 733af5d9f6b22387913e1d11350fb8cb7c1487dd 1.8.4 de9eb6b1da4fc522b1cab16d86ca166204c24f25 1.9 4a43e23b8c55b4566b8200bf69fe2158485a2634 1.9.1 d629f1e89021103f1753addcef6b310e4435b184 1.9.2 351a9292e430e35766c552066ed3e87c557b803b 1.9.3 384082750f2c51dc917d85a7145748330fa6ef4d 2.0-rc 41453d55b481ddfcc1dacb445179649e24ca861d 2.0 195dbd1cef0c2f9f8bcf4ea303238105f716bda3 2.0.1 6344043924497cd06d781d9014c66802285072e4 2.0.2 db33555eafeaf9df1e18950e29439eaa706d399b 2.1-rc 2aa5b51f310fb3befd26bed99c02267f5c12c734 2.1 53e2cd303ecf8ca7c7eeebd785c34e5ed6b0f4a4 2.1.1 b9bd95e61b49c221c4cca24e6da7c946fc02f992 2.1.2 d9e2f09d5488c395ae9ddbb320ceacd24757e055 2.2-rc 00182b3d087909e3c3ae44761efecdde8f319ef3 2.2 5983de86462c5a9f42a3ad0f5e90ce5b1d221d25 2.2.1 85a358df5bbbe404ca25730c9c459b34263441dc 2.2.2 b013baa3898e117959984fc64c29d8c784d2f28b 2.2.3 a06e2681dd1786e2354d84a5fa9c1c88dd4fa3e0 2.3-rc 7f5094bb3f423fc799e471aac2aee81a7ce57a0b 2.3 072209ae4ddb654eb2d5fd35bff358c738414432 2.3.1 b3f0f9a39c4e1d0250048cd803ab03542d6f140a 2.3.2 d118a4f4fd16d9b558ec3f3e87bfee772861d2b7 2.4-rc 195ad823b5d58c68903a6153a25e3fb4ed25239d 2.4 0c10cf8191469e7c3c8844922e17e71a176cb7cb 2.4.1