view tests/test-verify-repo-operations.py @ 40326:fed697fa1734

sqlitestore: file storage backend using SQLite This commit provides an extension which uses SQLite to store file data (as opposed to revlogs). As the inline documentation describes, there are still several aspects to the extension that are incomplete. But it's a start. The extension does support basic clone, checkout, and commit workflows, which makes it suitable for simple use cases. One notable missing feature is support for "bundlerepos." This is probably responsible for the most test failures when the extension is activated as part of the test suite. All revision data is stored in SQLite. Data is stored as zstd compressed chunks (default if zstd is available), zlib compressed chunks (default if zstd is not available), or raw chunks (if configured or if a compressed delta is not smaller than the raw delta). This makes things very similar to revlogs. Unlike revlogs, the extension doesn't yet enforce a limit on delta chain length. This is an obvious limitation and should be addressed. This is somewhat mitigated by the use of zstd, which is much faster than zlib to decompress. There is a dedicated table for storing deltas. Deltas are stored by the SHA-1 hash of their uncompressed content. The "fileindex" table has columns that reference the delta for each revision and the base delta that delta should be applied against. A recursive SQL query is used to resolve the delta chain along with the delta data. By storing deltas by hash, we are able to de-duplicate delta storage! With revlogs, the same deltas in different revlogs would result in duplicate storage of that delta. In this scheme, inserting the duplicate delta is a no-op and delta chains simply reference the existing delta. When initially implementing this extension, I did not have content-indexed deltas and deltas could be duplicated across files (just like revlogs). When I implemented content-indexed deltas, the size of the SQLite database for a full clone of mozilla-unified dropped: before: 2,554,261,504 bytes after: 2,488,754,176 bytes Surprisingly, this is still larger than the bytes size of revlog files: revlog files: 2,104,861,230 bytes du -b: 2,254,381,614 I would have expected storage to be smaller since we're not limiting delta chain length and since we're using zstd instead of zlib. I suspect the SQLite indexes and per-column overhead account for the bulk of the differences. (Keep in mind that revlog uses a 64-byte packed struct for revision index data and deltas are stored without padding. Aside from the 12 unused bytes in the 32 byte node field, revlogs are pretty efficient.) Another source of overhead is file name storage. With revlogs, file names are stored in the filesystem. But with SQLite, we need to store file names in the database. This is roughly equivalent to the size of the fncache file, which for the mozilla-unified repository is ~34MB. Since the SQLite database isn't append-only and since delta chains can reference any delta, this opens some interesting possibilities. For example, we could store deltas in reverse, such that fulltexts are stored for newer revisions and deltas are applied to reconstruct older revisions. This is likely a more optimal storage strategy for version control, as new data tends to be more frequently accessed than old data. We would obviously need wire protocol support for transferring revision data from newest to oldest. And we would probably need some kind of mechanism for "re-encoding" stores. But it should be doable. This extension is very much experimental quality. There are a handful of features that don't work. It probably isn't suitable for day-to-day use. But it could be used in limited cases (e.g. read-only checkouts like in CI). And it is also a good proving ground for alternate storage backends. As we continue to define interfaces for all things storage, it will be useful to have a viable alternate storage backend to see how things shake out in practice. test-storage.py passes on Python 2 and introduces no new test failures on Python 3. Having the storage-level unit tests has proved to be insanely useful when developing this extension. Those tests caught numerous bugs during development and I'm convinced this style of testing is the way forward for ensuring alternate storage backends work as intended. Of course, test coverage isn't close to what it needs to be. But it is a start. And what coverage we have gives me confidence that basic store functionality is implemented properly. Differential Revision: https://phab.mercurial-scm.org/D4928
author Gregory Szorc <gregory.szorc@gmail.com>
date Tue, 09 Oct 2018 08:50:13 -0700
parents 8b90367c4cf3
children 2372284d9457
line wrap: on
line source

from __future__ import print_function, absolute_import

"""Fuzz testing for operations against a Mercurial repository

This uses Hypothesis's stateful testing to generate random repository
operations and test Mercurial using them, both to see if there are any
unexpected errors and to compare different versions of it."""

import os
import subprocess
import sys

# Only run if slow tests are allowed
if subprocess.call(['python', '%s/hghave' % os.environ['TESTDIR'],
                    'slow']):
    sys.exit(80)

# These tests require Hypothesis and pytz to be installed.
# Running 'pip install hypothesis pytz' will achieve that.
# Note: This won't work if you're running Python < 2.7.
try:
    from hypothesis.extra.datetime import datetimes
except ImportError:
    sys.stderr.write("skipped: hypothesis or pytz not installed" + os.linesep)
    sys.exit(80)

# If you are running an old version of pip you may find that the enum34
# backport is not installed automatically. If so 'pip install enum34' will
# fix this problem.
try:
    import enum
    assert enum  # Silence pyflakes
except ImportError:
    sys.stderr.write("skipped: enum34 not installed" + os.linesep)
    sys.exit(80)

import binascii
from contextlib import contextmanager
import errno
import pipes
import shutil
import silenttestrunner
import subprocess

from hypothesis.errors import HypothesisException
from hypothesis.stateful import (
    rule, RuleBasedStateMachine, Bundle, precondition)
from hypothesis import settings, note, strategies as st
from hypothesis.configuration import set_hypothesis_home_dir
from hypothesis.database import ExampleDatabase

testdir = os.path.abspath(os.environ["TESTDIR"])

# We store Hypothesis examples here rather in the temporary test directory
# so that when rerunning a failing test this always results in refinding the
# previous failure. This directory is in .hgignore and should not be checked in
# but is useful to have for development.
set_hypothesis_home_dir(os.path.join(testdir, ".hypothesis"))

runtests = os.path.join(os.environ["RUNTESTDIR"], "run-tests.py")
testtmp = os.environ["TESTTMP"]
assert os.path.isdir(testtmp)

generatedtests = os.path.join(testdir, "hypothesis-generated")

try:
    os.makedirs(generatedtests)
except OSError:
    pass

# We write out generated .t files to a file in order to ease debugging and to
# give a starting point for turning failures Hypothesis finds into normal
# tests. In order to ensure that multiple copies of this test can be run in
# parallel we use atomic file create to ensure that we always get a unique
# name.
file_index = 0
while True:
    file_index += 1
    savefile = os.path.join(generatedtests, "test-generated-%d.t" % (
        file_index,
    ))
    try:
        os.close(os.open(savefile, os.O_CREAT | os.O_EXCL | os.O_WRONLY))
        break
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise
assert os.path.exists(savefile)

hgrc = os.path.join(".hg", "hgrc")

filecharacters = (
    "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
    "[]^_`;=@{}~ !#$%&'()+,-"
)

files = st.text(filecharacters, min_size=1).map(lambda x: x.strip()).filter(
    bool).map(lambda s: s.encode('ascii'))

safetext = st.text(st.characters(
    min_codepoint=1, max_codepoint=127,
    blacklist_categories=('Cc', 'Cs')), min_size=1).map(
    lambda s: s.encode('utf-8')
)

extensions = st.sampled_from(('shelve', 'mq', 'blackbox',))

@contextmanager
def acceptableerrors(*args):
    """Sometimes we know an operation we're about to perform might fail, and
    we're OK with some of the failures. In those cases this may be used as a
    context manager and will swallow expected failures, as identified by
    substrings of the error message Mercurial emits."""
    try:
        yield
    except subprocess.CalledProcessError as e:
        if not any(a in e.output for a in args):
            note(e.output)
            raise

reponames = st.text("abcdefghijklmnopqrstuvwxyz01234556789", min_size=1).map(
    lambda s: s.encode('ascii')
)

class verifyingstatemachine(RuleBasedStateMachine):
    """This defines the set of acceptable operations on a Mercurial repository
    using Hypothesis's RuleBasedStateMachine.

    The general concept is that we manage multiple repositories inside a
    repos/ directory in our temporary test location. Some of these are freshly
    inited, some are clones of the others. Our current working directory is
    always inside one of these repositories while the tests are running.

    Hypothesis then performs a series of operations against these repositories,
    including hg commands, generating contents and editing the .hgrc file.
    If these operations fail in unexpected ways or behave differently in
    different configurations of Mercurial, the test will fail and a minimized
    .t test file will be written to the hypothesis-generated directory to
    exhibit that failure.

    Operations are defined as methods with @rule() decorators. See the
    Hypothesis documentation at
    http://hypothesis.readthedocs.org/en/release/stateful.html for more
    details."""

    # A bundle is a reusable collection of previously generated data which may
    # be provided as arguments to future operations.
    repos = Bundle('repos')
    paths = Bundle('paths')
    contents = Bundle('contents')
    branches = Bundle('branches')
    committimes = Bundle('committimes')

    def __init__(self):
        super(verifyingstatemachine, self).__init__()
        self.repodir = os.path.join(testtmp, "repos")
        if os.path.exists(self.repodir):
            shutil.rmtree(self.repodir)
        os.chdir(testtmp)
        self.log = []
        self.failed = False
        self.configperrepo = {}
        self.all_extensions = set()
        self.non_skippable_extensions = set()

        self.mkdirp("repos")
        self.cd("repos")
        self.mkdirp("repo1")
        self.cd("repo1")
        self.hg("init")

    def teardown(self):
        """On teardown we clean up after ourselves as usual, but we also
        do some additional testing: We generate a .t file based on our test
        run using run-test.py -i to get the correct output.

        We then test it in a number of other configurations, verifying that
        each passes the same test."""
        super(verifyingstatemachine, self).teardown()
        try:
            shutil.rmtree(self.repodir)
        except OSError:
            pass
        ttest = os.linesep.join("  " + l for l in self.log)
        os.chdir(testtmp)
        path = os.path.join(testtmp, "test-generated.t")
        with open(path, 'w') as o:
            o.write(ttest + os.linesep)
        with open(os.devnull, "w") as devnull:
            rewriter = subprocess.Popen(
                [runtests, "--local", "-i", path], stdin=subprocess.PIPE,
                stdout=devnull, stderr=devnull,
            )
            rewriter.communicate("yes")
            with open(path, 'r') as i:
                ttest = i.read()

        e = None
        if not self.failed:
            try:
                output = subprocess.check_output([
                    runtests, path, "--local", "--pure"
                ], stderr=subprocess.STDOUT)
                assert "Ran 1 test" in output, output
                for ext in (
                    self.all_extensions - self.non_skippable_extensions
                ):
                    tf = os.path.join(testtmp, "test-generated-no-%s.t" % (
                        ext,
                    ))
                    with open(tf, 'w') as o:
                        for l in ttest.splitlines():
                            if l.startswith("  $ hg"):
                                l = l.replace(
                                    "--config %s=" % (
                                        extensionconfigkey(ext),), "")
                            o.write(l + os.linesep)
                    with open(tf, 'r') as r:
                        t = r.read()
                        assert ext not in t, t
                    output = subprocess.check_output([
                        runtests, tf, "--local",
                    ], stderr=subprocess.STDOUT)
                    assert "Ran 1 test" in output, output
            except subprocess.CalledProcessError as e:
                note(e.output)
        if self.failed or e is not None:
            with open(savefile, "wb") as o:
                o.write(ttest)
        if e is not None:
            raise e

    def execute_step(self, step):
        try:
            return super(verifyingstatemachine, self).execute_step(step)
        except (HypothesisException, KeyboardInterrupt):
            raise
        except Exception:
            self.failed = True
            raise

    # Section: Basic commands.
    def mkdirp(self, path):
        if os.path.exists(path):
            return
        self.log.append(
            "$ mkdir -p -- %s" % (pipes.quote(os.path.relpath(path)),))
        os.makedirs(path)

    def cd(self, path):
        path = os.path.relpath(path)
        if path == ".":
            return
        os.chdir(path)
        self.log.append("$ cd -- %s" % (pipes.quote(path),))

    def hg(self, *args):
        extra_flags = []
        for key, value in self.config.items():
            extra_flags.append("--config")
            extra_flags.append("%s=%s" % (key, value))
        self.command("hg", *(tuple(extra_flags) + args))

    def command(self, *args):
        self.log.append("$ " + ' '.join(map(pipes.quote, args)))
        subprocess.check_output(args, stderr=subprocess.STDOUT)

    # Section: Set up basic data
    # This section has no side effects but generates data that we will want
    # to use later.
    @rule(
        target=paths,
        source=st.lists(files, min_size=1).map(lambda l: os.path.join(*l)))
    def genpath(self, source):
        return source

    @rule(
        target=committimes,
        when=datetimes(min_year=1970, max_year=2038) | st.none())
    def gentime(self, when):
        return when

    @rule(
        target=contents,
        content=st.one_of(
            st.binary(),
            st.text().map(lambda x: x.encode('utf-8'))
        ))
    def gencontent(self, content):
        return content

    @rule(
        target=branches,
        name=safetext,
    )
    def genbranch(self, name):
        return name

    @rule(target=paths, source=paths)
    def lowerpath(self, source):
        return source.lower()

    @rule(target=paths, source=paths)
    def upperpath(self, source):
        return source.upper()

    # Section: Basic path operations
    @rule(path=paths, content=contents)
    def writecontent(self, path, content):
        self.unadded_changes = True
        if os.path.isdir(path):
            return
        parent = os.path.dirname(path)
        if parent:
            try:
                self.mkdirp(parent)
            except OSError:
                # It may be the case that there is a regular file that has
                # previously been created that has the same name as an ancestor
                # of the current path. This will cause mkdirp to fail with this
                # error. We just turn this into a no-op in that case.
                return
        with open(path, 'wb') as o:
            o.write(content)
        self.log.append((
            "$ python -c 'import binascii; "
            "print(binascii.unhexlify(\"%s\"))' > %s") % (
                binascii.hexlify(content),
                pipes.quote(path),
            ))

    @rule(path=paths)
    def addpath(self, path):
        if os.path.exists(path):
            self.hg("add", "--", path)

    @rule(path=paths)
    def forgetpath(self, path):
        if os.path.exists(path):
            with acceptableerrors(
                "file is already untracked",
            ):
                self.hg("forget", "--", path)

    @rule(s=st.none() | st.integers(0, 100))
    def addremove(self, s):
        args = ["addremove"]
        if s is not None:
            args.extend(["-s", str(s)])
        self.hg(*args)

    @rule(path=paths)
    def removepath(self, path):
        if os.path.exists(path):
            with acceptableerrors(
                'file is untracked',
                'file has been marked for add',
                'file is modified',
            ):
                self.hg("remove", "--", path)

    @rule(
        message=safetext,
        amend=st.booleans(),
        when=committimes,
        addremove=st.booleans(),
        secret=st.booleans(),
        close_branch=st.booleans(),
    )
    def maybecommit(
        self, message, amend, when, addremove, secret, close_branch
    ):
        command = ["commit"]
        errors = ["nothing changed"]
        if amend:
            errors.append("cannot amend public changesets")
            command.append("--amend")
        command.append("-m" + pipes.quote(message))
        if secret:
            command.append("--secret")
        if close_branch:
            command.append("--close-branch")
            errors.append("can only close branch heads")
        if addremove:
            command.append("--addremove")
        if when is not None:
            if when.year == 1970:
                errors.append('negative date value')
            if when.year == 2038:
                errors.append('exceeds 32 bits')
            command.append("--date=%s" % (
                when.strftime('%Y-%m-%d %H:%M:%S %z'),))

        with acceptableerrors(*errors):
            self.hg(*command)

    # Section: Repository management
    @property
    def currentrepo(self):
        return os.path.basename(os.getcwd())

    @property
    def config(self):
        return self.configperrepo.setdefault(self.currentrepo, {})

    @rule(
        target=repos,
        source=repos,
        name=reponames,
    )
    def clone(self, source, name):
        if not os.path.exists(os.path.join("..", name)):
            self.cd("..")
            self.hg("clone", source, name)
            self.cd(name)
        return name

    @rule(
        target=repos,
        name=reponames,
    )
    def fresh(self, name):
        if not os.path.exists(os.path.join("..", name)):
            self.cd("..")
            self.mkdirp(name)
            self.cd(name)
            self.hg("init")
        return name

    @rule(name=repos)
    def switch(self, name):
        self.cd(os.path.join("..", name))
        assert self.currentrepo == name
        assert os.path.exists(".hg")

    @rule(target=repos)
    def origin(self):
        return "repo1"

    @rule()
    def pull(self, repo=repos):
        with acceptableerrors(
            "repository default not found",
            "repository is unrelated",
        ):
            self.hg("pull")

    @rule(newbranch=st.booleans())
    def push(self, newbranch):
        with acceptableerrors(
            "default repository not configured",
            "no changes found",
        ):
            if newbranch:
                self.hg("push", "--new-branch")
            else:
                with acceptableerrors(
                    "creates new branches"
                ):
                    self.hg("push")

    # Section: Simple side effect free "check" operations
    @rule()
    def log(self):
        self.hg("log")

    @rule()
    def verify(self):
        self.hg("verify")

    @rule()
    def diff(self):
        self.hg("diff", "--nodates")

    @rule()
    def status(self):
        self.hg("status")

    @rule()
    def export(self):
        self.hg("export")

    # Section: Branch management
    @rule()
    def checkbranch(self):
        self.hg("branch")

    @rule(branch=branches)
    def switchbranch(self, branch):
        with acceptableerrors(
            'cannot use an integer as a name',
            'cannot be used in a name',
            'a branch of the same name already exists',
            'is reserved',
        ):
            self.hg("branch", "--", branch)

    @rule(branch=branches, clean=st.booleans())
    def update(self, branch, clean):
        with acceptableerrors(
            'unknown revision',
            'parse error',
        ):
            if clean:
                self.hg("update", "-C", "--", branch)
            else:
                self.hg("update", "--", branch)

    # Section: Extension management
    def hasextension(self, extension):
        return extensionconfigkey(extension) in self.config

    def commandused(self, extension):
        assert extension in self.all_extensions
        self.non_skippable_extensions.add(extension)

    @rule(extension=extensions)
    def addextension(self, extension):
        self.all_extensions.add(extension)
        self.config[extensionconfigkey(extension)] = ""

    @rule(extension=extensions)
    def removeextension(self, extension):
        self.config.pop(extensionconfigkey(extension), None)

    # Section: Commands from the shelve extension
    @rule()
    @precondition(lambda self: self.hasextension("shelve"))
    def shelve(self):
        self.commandused("shelve")
        with acceptableerrors("nothing changed"):
            self.hg("shelve")

    @rule()
    @precondition(lambda self: self.hasextension("shelve"))
    def unshelve(self):
        self.commandused("shelve")
        with acceptableerrors("no shelved changes to apply"):
            self.hg("unshelve")

class writeonlydatabase(ExampleDatabase):
    def __init__(self, underlying):
        super(ExampleDatabase, self).__init__()
        self.underlying = underlying

    def fetch(self, key):
        return ()

    def save(self, key, value):
        self.underlying.save(key, value)

    def delete(self, key, value):
        self.underlying.delete(key, value)

    def close(self):
        self.underlying.close()

def extensionconfigkey(extension):
    return "extensions." + extension

settings.register_profile(
    'default',  settings(
        timeout=300,
        stateful_step_count=50,
        max_examples=10,
    )
)

settings.register_profile(
    'fast',  settings(
        timeout=10,
        stateful_step_count=20,
        max_examples=5,
        min_satisfying_examples=1,
        max_shrinks=0,
    )
)

settings.register_profile(
    'continuous', settings(
        timeout=-1,
        stateful_step_count=1000,
        max_examples=10 ** 8,
        max_iterations=10 ** 8,
        database=writeonlydatabase(settings.default.database)
    )
)

settings.load_profile(os.getenv('HYPOTHESIS_PROFILE', 'default'))

verifyingtest = verifyingstatemachine.TestCase

verifyingtest.settings = settings.default

if __name__ == '__main__':
    try:
        silenttestrunner.main(__name__)
    finally:
        # So as to prevent proliferation of useless test files, if we never
        # actually wrote a failing test we clean up after ourselves and delete
        # the file for doing so that we owned.
        if os.path.exists(savefile) and os.path.getsize(savefile) == 0:
            os.unlink(savefile)