view tests/generate-working-copy-states.py @ 52216:fa58f4f97337 stable tip

ci: shard the test run on mac os X This should comes with some benefit: - spread the load across more runner, - reduce the real-time CI run, - reduce the "retry" run when we need them. We start with the Mac jobs, but that would be tremendously useful for Windows too. For linux, we need to reduce the startup overhead for this to be worth it. Building smaller image and speeding up clone should help with that.
author Pierre-Yves David <pierre-yves.david@octobus.net>
date Fri, 08 Nov 2024 17:08:11 +0100
parents ca7bde5dbafb
children
line wrap: on
line source

# Helper script used for generating history and working copy files and content.
# The file's name corresponds to its history. The number of changesets can
# be specified on the command line. With 2 changesets, files with names like
# content1_content2_content1-untracked are generated. The first two filename
# segments describe the contents in the two changesets. The third segment
# ("content1-untracked") describes the state in the working copy, i.e.
# the file has content "content1" and is untracked (since it was previously
# tracked, it has been forgotten).
#
# This script generates the filenames and their content, but it's up to the
# caller to tell hg about the state.
#
# There are two subcommands:
#   filelist <numchangesets>
#   state <numchangesets> (<changeset>|wc)
#
# Typical usage:
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'first'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'second'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 wc
# $ hg addremove --similarity 0
# $ hg forget *_*_*-untracked
# $ rm *_*_missing-*


import os
import sys


# Generates pairs of (filename, contents), where 'contents' is a list
# describing the file's content at each revision (or in the working copy).
# At each revision, it is either None or the file's actual content. When not
# None, it may be either new content or the same content as an earlier
# revisions, so all of (modified,clean,added,removed) can be tested.
def generatestates(maxchangesets, parentcontents):
    depth = len(parentcontents)
    if depth == maxchangesets + 1:
        for tracked in (b'untracked', b'tracked'):
            filename = (
                b"_".join(
                    [
                        (content is None and b'missing' or content)
                        for content in parentcontents
                    ]
                )
                + b"-"
                + tracked
            )
            yield (filename, parentcontents)
    else:
        for content in {None, b'content' + (b"%d" % (depth + 1))} | set(
            parentcontents
        ):
            for combination in generatestates(
                maxchangesets, parentcontents + [content]
            ):
                yield combination


# retrieve the command line arguments
target = sys.argv[1]
maxchangesets = int(sys.argv[2])
if target == 'state':
    depth = sys.argv[3]

# sort to make sure we have stable output
combinations = sorted(generatestates(maxchangesets, []))

# compute file content
content = []
for filename, states in combinations:
    if target == 'filelist':
        print(filename.decode('ascii'))
    elif target == 'state':
        if depth == 'wc':
            # Make sure there is content so the file gets written and can be
            # tracked. It will be deleted outside of this script.
            content.append((filename, states[maxchangesets] or b'TOBEDELETED'))
        else:
            content.append((filename, states[int(depth) - 1]))
    else:
        print("unknown target:", target, file=sys.stderr)
        sys.exit(1)

# write actual content
for filename, data in content:
    if data is not None:
        f = open(filename, 'wb')
        f.write(data + b'\n')
        f.close()
    elif os.path.exists(filename):
        os.remove(filename)