rust-nodemap: core implementation for shortest
In this implementation, we just make `lookup()` return also the number
of steps that have been needed to come to a conclusion from the
nodetree data, and `validate_candidate()` takes care of the special
cases related to `NULL_NODE`.
This way of doing minimizes code duplication, but it means that
the comparatively slower finding of first non zero nybble will run
for all calls to `find()` where it is not needed.
Still running on the file generated for the mozilla-central repository,
it seems indeed that we now get more ofter 320 ns than 310. The odds that
this could have a significant impact on real life Mercurial performance
are still looking low. Let's wait for actual benchmark runs to see if
an optimization is needed here.
Differential Revision: https://phab.mercurial-scm.org/D7819
rust-nodemap: special case for prefixes of NULL_NODE
We have to behave as though NULL_NODE was stored in the node tree,
although we don't store it.
Differential Revision: https://phab.mercurial-scm.org/D7798
rust-nodemap: pure Rust example
To run, use `cargo run --release --example nodemap`
This demonstrates that simple scenarios entirely written
in Rust can content themselves with `NodeTree<T>`.
The example mmaps both the nodemap file and the changelog index.
We had of course to include an implementation of `RevlogIndex`
directly, which isn't much at this stage. It felt a bit
prematurate to include it in the lib.
Here are some first performance measurements, obtained with
this example, on a clone of mozilla-central with 440000
changesets:
(create) Nodemap constructed in RAM in 153.638305ms
(query
CAE63161B68962) found in 22.362us: Ok(Some(269489))
(bench) Did 3 queries in 36.418µs (mean 12.139µs)
(bench) Did 50 queries in 184.318µs (mean 3.686µs)
(bench) Did 100000 queries in 31.053461ms (mean 310ns)
To be fair, even between bench runs, results tend to depend whether
the file is still in kernel caches, and it's not so easy to
get back to a real cold start. The worst we've seen was in the
50us ballpark.
In any busy server setting, the pages would always be in RAM.
We hope it's good enough not to be significantly slower on any
concrete Mercurial operation than the C nodetree when fully in RAM,
and of course this implementation has the serious headstart advantage
of persistence.
Differential Revision: https://phab.mercurial-scm.org/D7797