Georges Racinet <georges.racinet@octobus.net> [Tue, 16 Apr 2019 01:16:39 +0200] rev 42743
rust-discovery: using the children cache in add_missing
The DAG range computation often needs to get back to very old
revisions, and turns out to be disproportionately long, given
that the end goal is to remove the descendents of the given
missing revisons from the undecided set.
The fast iteration capabilities available in the Rust case make
it possible to avoid the DAG range entirely, at the cost of
precomputing the children cache, and to simply iterate on
children of the given missing revisions.
This is a case where staying on the same side of the interface
between the two languages has clear benefits.
On discoveries with initial undecided sets
small enough to bypass sampling entirely, the total cost of
computing the children cache and the subsequent iteration
becomes better than the Python + C counterpart, which relies on
reachableroots2.
For example, on a repo with more than one million revisions with
an initial undecided set of 11 elements, we get these figures:
Rust version with simple iteration
addcommons: 57.287us
first undecided computation: 184.278334ms
first children cache computation: 131.056us
addmissings iteration: 42.766us
first addinfo total: 185.24 ms
Python + C version
first addcommons: 0.29 ms
addcommons 0.21 ms
first undecided computation 191.35 ms
addmissings 45.75 ms
first addinfo total: 237.77 ms
On discoveries with large undecided sets, the initial price paid
makes the first addinfo slower than the Python + C version,
but that's more than compensated by the gain in sampling and
subsequent iterations.
Here's an extreme example with an undecided set of a million revisions:
Rust version:
first undecided computation: 293.842629ms
first children cache computation: 407.911297ms
addmissings iteration: 34.312869ms
first addinfo total: 776.02 ms
taking initial sample
query 2: sampling time: 1318.38 ms
query 2; still undecided: 1005013, sample size is: 200
addmissings: 143.062us
Python + C version:
first undecided computation 298.13 ms
addmissings 80.13 ms
first addinfo total: 399.62 ms
taking initial sample
query 2: sampling time: 3957.23 ms
query 2; still undecided: 1005013, sample size is: 200
addmissings 52.88 ms
Differential Revision: https://phab.mercurial-scm.org/D6428
Georges Racinet <georges.racinet@octobus.net> [Tue, 21 May 2019 17:44:15 +0200] rev 42742
discovery: new devel.discovery.randomize option
By default, this is True, but setting it to False is a uniform
way to kill all randomness in integration tests such as test-setdiscovery.t
By "uniform" we mean that it can be passed to implementations in other
languages, for which the monkey-patching of random.sample would be
irrelevant.
In the above mentioned test file, we use it right away,
replacing the adhoc extension that had the same purpose, and to derandomize a
case with many round-trips, that we'll need to behave uniformly in the Rust
version.
Differential Revision: https://phab.mercurial-scm.org/D6427
Georges Racinet <georges.racinet@octobus.net> [Tue, 21 May 2019 17:43:55 +0200] rev 42741
rust-discovery: optionally don't randomize at all, for tests
As seen from Python, this is a new `randomize` kwarg in init of the
discovery object. It replaces random picking by some arbitrary yet
deterministic strategy.
This is the same as what test-setdiscovery.t does, with the added
benefit to be usable both in Python and Rust implementations.
Differential Revision: https://phab.mercurial-scm.org/D6426
Georges Racinet <georges.racinet@octobus.net> [Fri, 17 May 2019 01:56:57 +0200] rev 42740
rust-discovery: exposing sampling to python
Differential Revision: https://phab.mercurial-scm.org/D6425
Augie Fackler <augie@google.com> [Fri, 16 Aug 2019 15:41:53 +0300] rev 42739
tests: use `tr -d` and not `tr --delete` as the latter is absent on BSD tr(1)
Differential Revision: https://phab.mercurial-scm.org/D6729
Georges Racinet <georges.racinet@octobus.net> [Fri, 17 May 2019 01:56:57 +0200] rev 42738
rust-discovery: takefullsample() core implementation
take_full_sample() browses the undecided set in both directions: from
its roots as well as from its heads.
Following what's done on the Python side, we alter update_sample()
signature to take a closure returning an iterator: either ParentsIterator
or an iterator over the children found in `children_cache`. These constructs
should probably be split off in a separate module.
This is a first concrete example where a more abstract graph notion (probably
a trait) would be useful, as this is nothing but an operation on the reversed
DAG.
A similar motivation in the context of the discovery
process would be to replace the call to dagops::range in
`add_missing_revisions()` with a simple iteration over descendents, again an
operation on the reversed graph.
Differential Revision: https://phab.mercurial-scm.org/D6424
Georges Racinet <georges.racinet@octobus.net> [Fri, 17 May 2019 01:56:56 +0200] rev 42737
rust-discovery: core implementation for take_quick_sample()
This makes in particular `rand` no longer a testing dependency.
We keep a seedable random generator on the `PartialDiscovery` object
itself, to avoid lengthy initialization.
In take_quick_sample() itself, we had to avoid keeping the reference
to `self.undecided` to cope with the mutable reference introduced
by the the call to `limit_sample`, but it's still manageable without
resorting to inner mutability.
Sampling being prone to be improved in the mid-term future, testing
is minimal, amounting to checking which code path got executed.
Differential Revision: https://phab.mercurial-scm.org/D6423