Thu, 13 Sep 2018 00:39:02 -0400 py3: byteify strings in pycompat
Matt Harbison <matt_harbison@yahoo.com> [Thu, 13 Sep 2018 00:39:02 -0400] rev 39642
py3: byteify strings in pycompat These surfaced when disabling the source transformer to debug the problems in win32.py. ./contrib/byteify-strings.py found a couple false positives, so I marked them with r'' explicitly (in case I'm wrong). # skip-blame since this is just b'' and r'' prefixing
Thu, 30 Aug 2018 14:55:34 -0700 wireprotov2: let clients drive delta behavior
Gregory Szorc <gregory.szorc@gmail.com> [Thu, 30 Aug 2018 14:55:34 -0700] rev 39641
wireprotov2: let clients drive delta behavior Previously, the "manifestdata" and "filedata" commands assumed the receiver had all parent revisions for requested nodes. Unless the revision had no parents, they emitted a delta instead of a fulltext. This strategy isn't appropriate for shallow clones and for clients that only want to access fulltext revision data for a single node without fetching their parent revisions. This commit adds an "haveparents" argument to the "manifestdata" and "filedata" commands that controls delta generation behavior. Unless "haveparents" is set, the server assumes that the client doesn't have parent revisions unless they were previously sent as part of the current group of revisions. This change allows the fulltext revision data of any individual revision to be obtained. This will facilitate shallow clones and other data retrieval strategies that don't require all previous revisions of an entity to be fetched. Differential Revision: https://phab.mercurial-scm.org/D4492
Tue, 04 Sep 2018 10:42:24 -0700 exchangev2: fetch file revisions
Gregory Szorc <gregory.szorc@gmail.com> [Tue, 04 Sep 2018 10:42:24 -0700] rev 39640
exchangev2: fetch file revisions Now that the server has an API for fetching file data, we can call into it to fetch file revisions. The implementation is relatively straightforward: we examine the manifests that we fetched and find all new file revisions referenced by them. We build up a mapping from file path to file nodes to manifest node. (The mapping to first manifest node allows us to map back to first changelog node/revision, which is used for the linkrev.) Once that map is built up, we iterate over it in a deterministic manner and fetch and store file data. The code is very similar to manifest fetching. So similar that we could probably extract the common bits into a generic function. With file data retrieval implemented, `hg clone` and `hg pull` are effectively feature complete, at least as far as the completeness of data transfer for essential repository data (changesets, manifests, files, phases, and bookmarks). We're still missing support for obsolescence markers, the hgtags fnodes cache, and the branchmap cache. But these are non-essential for the moment (and will be implemented later). This is a good point to assess the state of exchangev2 in terms of performance. I ran a local `hg clone` for the mozilla-unified repository using both version 1 and version 2 of the wire protocols and exchange methods. This is effectively comparing the performance of the wire protocol overhead and "getbundle" versus domain-specific commands. Wire protocol version 2 doesn't have compression implemented yet. So I tested version 1 with `server.compressionengines=none` to remove compression overhead from the equation. server before: user 220.420+0.000 sys 14.420+0.000 after: user 321.980+0.000 sys 18.990+0.000 client before: real 561.650 secs (user 497.670+0.000 sys 28.160+0.000) after: real 1226.260 secs (user 944.240+0.000 sys 354.150+0.000) We have substantial regressions on both client and server. This is obviously not desirable. I'm aware of some reasons: * Lack of hgtagsfnodes transfer (contributes significant CPU to client). * Lack of branch cache transfer (contributes significant CPU to client). * Little to no profiling / optimization performed on wire protocol version 2 code. * There appears to be a memory leak on the client and that is likely causing swapping on my machine. * Using multiple threads on the client may be counter-productive because Python. * We're not compressing on the server. * We're tracking file nodes on the client via manifest diffing rather than using linkrev shortcuts on the server. I'm pretty confident that most of these issues are addressable. But even if we can't get wire protocol version 2 on performance parity with "getbundle," I still think it is important to have the set of low level data-specific retrieval commands that we have implemented so far. This is because the existence of such commands allows flexibility in how clients access server data. Differential Revision: https://phab.mercurial-scm.org/D4491
(0) -30000 -10000 -3000 -1000 -300 -100 -30 -10 -3 +3 +10 +30 +100 +300 +1000 +3000 +10000 tip