Mads Kiilerich <madski@unity3d.com> [Wed, 14 Jan 2015 01:15:26 +0100] rev 30446
posix: give checkexec a fast path; keep the check files and test read only
Before, Mercurial would create a new temporary file every time, stat it, change
its exec mode, stat it again, and delete it. Most of this dance was done to
handle the rare and not-so-essential case of VFAT mounts on unix. The cost of
that was paid by the much more common and important case of using normal file
systems.
Instead, try to create and preserve .hg/cache/checkisexec and
.hg/cache/checknoexec with and without exec flag set. If the files exist and
have correct exec flags set, we can conclude that that file system supports the
exec flag. Best case, the whole exec check can thus be done with two stat
calls. Worst case, we delete the wrong files and check as usual. That will be
because temporary loss of exec bit or on file systems without support for the
exec bit. In that case we check as we did before, with the additional overhead
of one extra stat call.
It is possible that this different test algorithm in some cases on odd file
systems will give different behaviour. Again, I think it will be rare and
special cases and I think it is worth the risk.
test-clone.t happens to show the situation where checkisexec is left behind
from the old style check, while checknoexec only will be created next time a
exec check will be performed.
Mads Kiilerich <madski@unity3d.com> [Wed, 14 Jan 2015 01:15:26 +0100] rev 30445
posix: simplify checkexec check
Use a slightly simpler logic that in some cases can avoid an unnecessary chmod
and stat.
Instead of flipping the X bits, make it more clear that we rely on no X bits
being set on initial file creation, and that at least some of them stick after
they all have been set.
Mads Kiilerich <madski@unity3d.com> [Thu, 17 Nov 2016 12:59:36 +0100] rev 30444
posix: move checkexec test file to .hg/cache
This avoids unnecessary churn in the working directory.
It is not necessarily a fully valid assumption that .hg/cache is on the same
filesystem as the working directory, but I think it is an acceptable
approximation. It could also be the case that different parts of the working
directory is on different mount points so checking in the root folder could
also be wrong.
Durham Goode <durham@fb.com> [Thu, 17 Nov 2016 15:31:19 -0800] rev 30443
manifest: move manifestctx creation into manifestlog.get()
Most manifestctx creation already happened in manifestlog.get(), but there was
one spot in the manifestctx class itself that created an instance manually. This
patch makes that one instance go through the manifestlog. This means extensions
can just wrap manifestlog.get() and it will cover all manifestctx creations. It
also means this code path now hits the manifestlog cache.
Gregory Szorc <gregory.szorc@gmail.com> [Fri, 11 Nov 2016 01:10:07 -0800] rev 30442
util: implement zstd compression engine
Now that zstd is vendored and being built (in some configurations), we
can implement a compression engine for zstd!
The zstd engine is a little different from existing engines. Because
it may not always be present, we have to defer load the module in case
importing it fails. We facilitate this via a cached property that holds
a reference to the module or None. The "available" method is
implemented to reflect reality.
The zstd engine declares its ability to handle bundles using the
"zstd" human name and the "ZS" internal name. The latter was chosen
because internal names are 2 characters (by only convention I think)
and "ZS" seems reasonable.
The engine, like others, supports specifying the compression level.
However, there are no consumers of this API that yet pass in that
argument. I have plans to change that, so stay tuned.
Since all we need to do to support bundle generation with a new
compression engine is implement and register the compression engine,
bundle generation with zstd "just works!" Tests demonstrating this
have been added.
How does performance of zstd for bundle generation compare? On the
mozilla-unified repo, `hg bundle --all -t <engine>-v2` yields the
following on my i7-6700K on Linux:
engine CPU time bundle size vs orig size throughput
none 97.0s 4,054,405,584 100.0% 41.8 MB/s
bzip2 (l=9) 393.6s 975,343,098 24.0% 10.3 MB/s
gzip (l=6) 184.0s 1,140,533,074 28.1% 22.0 MB/s
zstd (l=1) 108.2s 1,119,434,718 27.6% 37.5 MB/s
zstd (l=2) 111.3s 1,078,328,002 26.6% 36.4 MB/s
zstd (l=3) 113.7s 1,011,823,727 25.0% 35.7 MB/s
zstd (l=4) 116.0s 1,008,965,888 24.9% 35.0 MB/s
zstd (l=5) 121.0s 977,203,148 24.1% 33.5 MB/s
zstd (l=6) 131.7s 927,360,198 22.9% 30.8 MB/s
zstd (l=7) 139.0s 912,808,505 22.5% 29.2 MB/s
zstd (l=12) 198.1s 854,527,714 21.1% 20.5 MB/s
zstd (l=18) 681.6s 789,750,690 19.5% 5.9 MB/s
On compression, zstd for bundle generation delivers:
* better compression than gzip with significantly less CPU utilization
* better than bzip2 compression ratios while still being significantly
faster than gzip
* ability to aggressively tune compression level to achieve
significantly smaller bundles
That last point is important. With clone bundles, a server can
pre-generate a bundle file, upload it to a static file server, and
redirect clients to transparently download it during clone. The server
could choose to produce a zstd bundle with the highest compression
settings possible. This would take a very long time - a magnitude
longer than a typical zstd bundle generation - but the result would
be hundreds of megabytes smaller! For the clone volume we do at
Mozilla, this could translate to petabytes of bandwidth savings
per year and faster clones (due to smaller transfer size).
I don't have detailed numbers to report on decompression. However,
zstd decompression is fast: >1 GB/s output throughput on this machine,
even through the Python bindings. And it can do that regardless of the
compression level of the input. By the time you have enough data to
worry about overhead of decompression, you have plenty of other things
to worry about performance wise.
zstd is wins all around. I can't wait to implement support for it
on the wire protocol and in revlogs.
Gregory Szorc <gregory.szorc@gmail.com> [Thu, 10 Nov 2016 23:38:41 -0800] rev 30441
hghave: add check for zstd support
Not all configurations will support zstd. Add a check so we can
conditionalize tests.
Gregory Szorc <gregory.szorc@gmail.com> [Thu, 10 Nov 2016 23:34:15 -0800] rev 30440
exchange: obtain compression engines from the registrar
util.compengines has knowledge of all registered compression engines
and the metadata that associates them with various bundle types.
This patch removes the now redundant declaration of this metadata from
exchange.py and obtains it from the new source.
The effect of this patch is that once a new compression engine is
registered with util.compengines, `hg bundle -t <engine>` will just
work.
Gregory Szorc <gregory.szorc@gmail.com> [Thu, 10 Nov 2016 23:29:01 -0800] rev 30439
bundle2: equate 'UN' with no compression
An upcoming patch will change the "alg" argument passed to this
function from None to "UN" when no compression is wanted.
The existing implementation of bundle2 does not set a "Compression"
parameter if no compression is used. In theory, setting
"Compression=UN" should work. But I haven't audited the code to see if
all client versions supporting bundle2 will accept this.
Rather than take the risk, avoid the BC breakage and treat "UN"
the same as None.
Gregory Szorc <gregory.szorc@gmail.com> [Thu, 10 Nov 2016 23:15:02 -0800] rev 30438
util: check for compression engine availability before returning
If a requested compression engine is registered but not available,
requesting it will now abort.
To be honest, I'm not sure if this is the appropriate mechanism
for handling optional compression engines. I won't know until
all uses of compression (bundles, wire protocol, revlogs, etc)
are using the new API and zstd (our planned optional engine)
is implemented. So this API could change.
Gregory Szorc <gregory.szorc@gmail.com> [Thu, 10 Nov 2016 23:03:48 -0800] rev 30437
util: expose an "available" API on compression engines
When the zstd compression engine is introduced, it won't work in all
installations, namely pure Python installs. So, we need a mechanism to
declare whether a compression engine is available. We don't want to
conditionally register the compression engine because it is sometimes
useful to know when a compression engine name or encountered data is
valid but just not available versus unknown.