changeset 30434:2e484bdea8c4

zstd: vendor zstd 1.1.1 zstd is a new compression format and it is awesome, yielding higher compression ratios and significantly faster compression and decompression operations compared to zlib (our current compression engine of choice) across the board. We want zstd to be a 1st class citizen in Mercurial and to eventually be the preferred compression format for various operations. This patch starts the formal process of supporting zstd by vendoring a copy of zstd. Why do we need to vendor zstd? Good question. First, zstd is relatively new and not widely available yet. If we didn't vendor zstd or distribute it with Mercurial, most users likely wouldn't have zstd installed or even available to install. What good is a feature if you can't use it? Vendoring and distributing the zstd sources gives us the highest liklihood that zstd will be available to Mercurial installs. Second, the Python bindings to zstd (which will be vendored in a separate changeset) make use of zstd APIs that are only available via static linking. One reason they are only available via static linking is that they are unstable and could change at any time. While it might be possible for the Python bindings to attempt to talk to different versions of the zstd C library, the safest thing to do is link against a specific, known-working version of zstd. This is why the Python zstd bindings themselves vendor zstd and why we must as well. This also explains why the added files are in a "python-zstandard" directory. The added files are from the 1.1.1 release of zstd (Git commit 4c0b44f8ced84c4c8edfa07b564d31e4fa3e8885 from https://github.com/facebook/zstd) and are added without modifications. Not all files from the zstd "distribution" have been added. Notably missing are files to support interacting with "legacy," pre-1.0 versions of zstd. The decision of which files to include is made by the upstream python-zstandard project (which I'm the author of). The files in this commit are a snapshot of the files from the 0.5.0 release of that project, Git commit e637c1b214d5f869cf8116c550dcae23ec13b677 from https://github.com/indygreg/python-zstandard.
author Gregory Szorc <gregory.szorc@gmail.com>
date Thu, 10 Nov 2016 21:45:29 -0800
parents 96f2f50d923f
children b86a448a2965
files contrib/python-zstandard/zstd/LICENSE contrib/python-zstandard/zstd/PATENTS contrib/python-zstandard/zstd/common/bitstream.h contrib/python-zstandard/zstd/common/entropy_common.c contrib/python-zstandard/zstd/common/error_private.c contrib/python-zstandard/zstd/common/error_private.h contrib/python-zstandard/zstd/common/fse.h contrib/python-zstandard/zstd/common/fse_decompress.c contrib/python-zstandard/zstd/common/huf.h contrib/python-zstandard/zstd/common/mem.h contrib/python-zstandard/zstd/common/xxhash.c contrib/python-zstandard/zstd/common/xxhash.h contrib/python-zstandard/zstd/common/zbuff.h contrib/python-zstandard/zstd/common/zstd_common.c contrib/python-zstandard/zstd/common/zstd_errors.h contrib/python-zstandard/zstd/common/zstd_internal.h contrib/python-zstandard/zstd/compress/fse_compress.c contrib/python-zstandard/zstd/compress/huf_compress.c contrib/python-zstandard/zstd/compress/zbuff_compress.c contrib/python-zstandard/zstd/compress/zstd_compress.c contrib/python-zstandard/zstd/compress/zstd_opt.h contrib/python-zstandard/zstd/decompress/huf_decompress.c contrib/python-zstandard/zstd/decompress/zbuff_decompress.c contrib/python-zstandard/zstd/decompress/zstd_decompress.c contrib/python-zstandard/zstd/dictBuilder/divsufsort.c contrib/python-zstandard/zstd/dictBuilder/divsufsort.h contrib/python-zstandard/zstd/dictBuilder/zdict.c contrib/python-zstandard/zstd/dictBuilder/zdict.h contrib/python-zstandard/zstd/zstd.h
diffstat 29 files changed, 16703 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/LICENSE	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,30 @@
+BSD License
+
+For Zstandard software
+
+Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+   list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright notice,
+   this list of conditions and the following disclaimer in the documentation
+   and/or other materials provided with the distribution.
+
+ * Neither the name Facebook nor the names of its contributors may be used to
+   endorse or promote products derived from this software without specific
+   prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/PATENTS	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,33 @@
+Additional Grant of Patent Rights Version 2
+
+"Software" means the Zstandard software distributed by Facebook, Inc.
+
+Facebook, Inc. ("Facebook") hereby grants to each recipient of the Software
+("you") a perpetual, worldwide, royalty-free, non-exclusive, irrevocable
+(subject to the termination provision below) license under any Necessary
+Claims, to make, have made, use, sell, offer to sell, import, and otherwise
+transfer the Software. For avoidance of doubt, no license is granted under
+Facebook’s rights in any patent claims that are infringed by (i) modifications
+to the Software made by you or any third party or (ii) the Software in
+combination with any software or other technology.
+
+The license granted hereunder will terminate, automatically and without notice,
+if you (or any of your subsidiaries, corporate affiliates or agents) initiate
+directly or indirectly, or take a direct financial interest in, any Patent
+Assertion: (i) against Facebook or any of its subsidiaries or corporate
+affiliates, (ii) against any party if such Patent Assertion arises in whole or
+in part from any software, technology, product or service of Facebook or any of
+its subsidiaries or corporate affiliates, or (iii) against any party relating
+to the Software. Notwithstanding the foregoing, if Facebook or any of its
+subsidiaries or corporate affiliates files a lawsuit alleging patent
+infringement against you in the first instance, and you respond by filing a
+patent infringement counterclaim in that lawsuit against that party that is
+unrelated to the Software, the license granted hereunder will not terminate
+under section (i) of this paragraph due to such counterclaim.
+
+A "Necessary Claim" is a claim of a patent owned by Facebook that is
+necessarily infringed by the Software standing alone.
+
+A "Patent Assertion" is any lawsuit or other action alleging direct, indirect,
+or contributory infringement or inducement to infringe any patent, including a
+cross-claim or counterclaim.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/bitstream.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,414 @@
+/* ******************************************************************
+   bitstream
+   Part of FSE library
+   header file (to include)
+   Copyright (C) 2013-2016, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+   You can contact the author at :
+   - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef BITSTREAM_H_MODULE
+#define BITSTREAM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*
+*  This API consists of small unitary functions, which must be inlined for best performance.
+*  Since link-time-optimization is not available for all compilers,
+*  these functions are defined into a .h to be included.
+*/
+
+/*-****************************************
+*  Dependencies
+******************************************/
+#include "mem.h"            /* unaligned access routines */
+#include "error_private.h"  /* error codes and messages */
+
+
+/*=========================================
+*  Target specific
+=========================================*/
+#if defined(__BMI__) && defined(__GNUC__)
+#  include <immintrin.h>   /* support for bextr (experimental) */
+#endif
+
+
+/*-******************************************
+*  bitStream encoding API (write forward)
+********************************************/
+/* bitStream can mix input from multiple sources.
+*  A critical property of these streams is that they encode and decode in **reverse** direction.
+*  So the first bit sequence you add will be the last to be read, like a LIFO stack.
+*/
+typedef struct
+{
+    size_t bitContainer;
+    int    bitPos;
+    char*  startPtr;
+    char*  ptr;
+    char*  endPtr;
+} BIT_CStream_t;
+
+MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
+MEM_STATIC void   BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
+MEM_STATIC void   BIT_flushBits(BIT_CStream_t* bitC);
+MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
+
+/* Start with initCStream, providing the size of buffer to write into.
+*  bitStream will never write outside of this buffer.
+*  `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
+*
+*  bits are first added to a local register.
+*  Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
+*  Writing data into memory is an explicit operation, performed by the flushBits function.
+*  Hence keep track how many bits are potentially stored into local register to avoid register overflow.
+*  After a flushBits, a maximum of 7 bits might still be stored into local register.
+*
+*  Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
+*
+*  Last operation is to close the bitStream.
+*  The function returns the final size of CStream in bytes.
+*  If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
+*/
+
+
+/*-********************************************
+*  bitStream decoding API (read backward)
+**********************************************/
+typedef struct
+{
+    size_t   bitContainer;
+    unsigned bitsConsumed;
+    const char* ptr;
+    const char* start;
+} BIT_DStream_t;
+
+typedef enum { BIT_DStream_unfinished = 0,
+               BIT_DStream_endOfBuffer = 1,
+               BIT_DStream_completed = 2,
+               BIT_DStream_overflow = 3 } BIT_DStream_status;  /* result of BIT_reloadDStream() */
+               /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
+
+MEM_STATIC size_t   BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
+MEM_STATIC size_t   BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
+
+
+/* Start by invoking BIT_initDStream().
+*  A chunk of the bitStream is then stored into a local register.
+*  Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
+*  You can then retrieve bitFields stored into the local register, **in reverse order**.
+*  Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
+*  A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
+*  Otherwise, it can be less than that, so proceed accordingly.
+*  Checking if DStream has reached its end can be performed with BIT_endOfDStream().
+*/
+
+
+/*-****************************************
+*  unsafe API
+******************************************/
+MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
+/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
+
+MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
+/* unsafe version; does not check buffer overflow */
+
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
+/* faster, but works only if nbBits >= 1 */
+
+
+
+/*-**************************************************************
+*  Internal functions
+****************************************************************/
+MEM_STATIC unsigned BIT_highbit32 (register U32 val)
+{
+#   if defined(_MSC_VER)   /* Visual */
+    unsigned long r=0;
+    _BitScanReverse ( &r, val );
+    return (unsigned) r;
+#   elif defined(__GNUC__) && (__GNUC__ >= 3)   /* Use GCC Intrinsic */
+    return 31 - __builtin_clz (val);
+#   else   /* Software version */
+    static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+    U32 v = val;
+    v |= v >> 1;
+    v |= v >> 2;
+    v |= v >> 4;
+    v |= v >> 8;
+    v |= v >> 16;
+    return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
+#   endif
+}
+
+/*=====    Local Constants   =====*/
+static const unsigned BIT_mask[] = { 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,  0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF };   /* up to 26 bits */
+
+
+/*-**************************************************************
+*  bitStream encoding
+****************************************************************/
+/*! BIT_initCStream() :
+ *  `dstCapacity` must be > sizeof(void*)
+ *  @return : 0 if success,
+              otherwise an error code (can be tested using ERR_isError() ) */
+MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* startPtr, size_t dstCapacity)
+{
+    bitC->bitContainer = 0;
+    bitC->bitPos = 0;
+    bitC->startPtr = (char*)startPtr;
+    bitC->ptr = bitC->startPtr;
+    bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->ptr);
+    if (dstCapacity <= sizeof(bitC->ptr)) return ERROR(dstSize_tooSmall);
+    return 0;
+}
+
+/*! BIT_addBits() :
+    can add up to 26 bits into `bitC`.
+    Does not check for register overflow ! */
+MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits)
+{
+    bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
+    bitC->bitPos += nbBits;
+}
+
+/*! BIT_addBitsFast() :
+ *  works only if `value` is _clean_, meaning all high bits above nbBits are 0 */
+MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits)
+{
+    bitC->bitContainer |= value << bitC->bitPos;
+    bitC->bitPos += nbBits;
+}
+
+/*! BIT_flushBitsFast() :
+ *  unsafe version; does not check buffer overflow */
+MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
+{
+    size_t const nbBytes = bitC->bitPos >> 3;
+    MEM_writeLEST(bitC->ptr, bitC->bitContainer);
+    bitC->ptr += nbBytes;
+    bitC->bitPos &= 7;
+    bitC->bitContainer >>= nbBytes*8;   /* if bitPos >= sizeof(bitContainer)*8 --> undefined behavior */
+}
+
+/*! BIT_flushBits() :
+ *  safe version; check for buffer overflow, and prevents it.
+ *  note : does not signal buffer overflow. This will be revealed later on using BIT_closeCStream() */
+MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
+{
+    size_t const nbBytes = bitC->bitPos >> 3;
+    MEM_writeLEST(bitC->ptr, bitC->bitContainer);
+    bitC->ptr += nbBytes;
+    if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
+    bitC->bitPos &= 7;
+    bitC->bitContainer >>= nbBytes*8;   /* if bitPos >= sizeof(bitContainer)*8 --> undefined behavior */
+}
+
+/*! BIT_closeCStream() :
+ *  @return : size of CStream, in bytes,
+              or 0 if it could not fit into dstBuffer */
+MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
+{
+    BIT_addBitsFast(bitC, 1, 1);   /* endMark */
+    BIT_flushBits(bitC);
+
+    if (bitC->ptr >= bitC->endPtr) return 0; /* doesn't fit within authorized budget : cancel */
+
+    return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
+}
+
+
+/*-********************************************************
+* bitStream decoding
+**********************************************************/
+/*! BIT_initDStream() :
+*   Initialize a BIT_DStream_t.
+*   `bitD` : a pointer to an already allocated BIT_DStream_t structure.
+*   `srcSize` must be the *exact* size of the bitStream, in bytes.
+*   @return : size of stream (== srcSize) or an errorCode if a problem is detected
+*/
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
+{
+    if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
+
+    if (srcSize >=  sizeof(bitD->bitContainer)) {  /* normal case */
+        bitD->start = (const char*)srcBuffer;
+        bitD->ptr   = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
+        bitD->bitContainer = MEM_readLEST(bitD->ptr);
+        { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+          bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
+          if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
+    } else {
+        bitD->start = (const char*)srcBuffer;
+        bitD->ptr   = bitD->start;
+        bitD->bitContainer = *(const BYTE*)(bitD->start);
+        switch(srcSize)
+        {
+            case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
+            case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
+            case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
+            case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
+            case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
+            case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) <<  8;
+            default:;
+        }
+        { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
+          bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
+          if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
+        bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
+    }
+
+    return srcSize;
+}
+
+MEM_STATIC size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
+{
+    return bitContainer >> start;
+}
+
+MEM_STATIC size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
+{
+#if defined(__BMI__) && defined(__GNUC__)   /* experimental */
+#  if defined(__x86_64__)
+    if (sizeof(bitContainer)==8)
+        return _bextr_u64(bitContainer, start, nbBits);
+    else
+#  endif
+        return _bextr_u32(bitContainer, start, nbBits);
+#else
+    return (bitContainer >> start) & BIT_mask[nbBits];
+#endif
+}
+
+MEM_STATIC size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
+{
+    return bitContainer & BIT_mask[nbBits];
+}
+
+/*! BIT_lookBits() :
+ *  Provides next n bits from local register.
+ *  local register is not modified.
+ *  On 32-bits, maxNbBits==24.
+ *  On 64-bits, maxNbBits==56.
+ *  @return : value extracted
+ */
+ MEM_STATIC size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
+{
+#if defined(__BMI__) && defined(__GNUC__)   /* experimental; fails if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8 */
+    return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
+#else
+    U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
+    return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
+#endif
+}
+
+/*! BIT_lookBitsFast() :
+*   unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
+{
+    U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
+    return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
+}
+
+MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+    bitD->bitsConsumed += nbBits;
+}
+
+/*! BIT_readBits() :
+ *  Read (consume) next n bits from local register and update.
+ *  Pay attention to not read more than nbBits contained into local register.
+ *  @return : extracted value.
+ */
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
+{
+    size_t const value = BIT_lookBits(bitD, nbBits);
+    BIT_skipBits(bitD, nbBits);
+    return value;
+}
+
+/*! BIT_readBitsFast() :
+*   unsafe version; only works only if nbBits >= 1 */
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
+{
+    size_t const value = BIT_lookBitsFast(bitD, nbBits);
+    BIT_skipBits(bitD, nbBits);
+    return value;
+}
+
+/*! BIT_reloadDStream() :
+*   Refill `BIT_DStream_t` from src buffer previously defined (see BIT_initDStream() ).
+*   This function is safe, it guarantees it will not read beyond src buffer.
+*   @return : status of `BIT_DStream_t` internal register.
+              if status == unfinished, internal register is filled with >= (sizeof(bitD->bitContainer)*8 - 7) bits */
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
+{
+	if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8))  /* should not happen => corruption detected */
+		return BIT_DStream_overflow;
+
+    if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
+        bitD->ptr -= bitD->bitsConsumed >> 3;
+        bitD->bitsConsumed &= 7;
+        bitD->bitContainer = MEM_readLEST(bitD->ptr);
+        return BIT_DStream_unfinished;
+    }
+    if (bitD->ptr == bitD->start) {
+        if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
+        return BIT_DStream_completed;
+    }
+    {   U32 nbBytes = bitD->bitsConsumed >> 3;
+        BIT_DStream_status result = BIT_DStream_unfinished;
+        if (bitD->ptr - nbBytes < bitD->start) {
+            nbBytes = (U32)(bitD->ptr - bitD->start);  /* ptr > start */
+            result = BIT_DStream_endOfBuffer;
+        }
+        bitD->ptr -= nbBytes;
+        bitD->bitsConsumed -= nbBytes*8;
+        bitD->bitContainer = MEM_readLEST(bitD->ptr);   /* reminder : srcSize > sizeof(bitD) */
+        return result;
+    }
+}
+
+/*! BIT_endOfDStream() :
+*   @return Tells if DStream has exactly reached its end (all bits consumed).
+*/
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
+{
+    return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* BITSTREAM_H_MODULE */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/entropy_common.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,225 @@
+/*
+   Common functions of New Generation Entropy library
+   Copyright (C) 2016, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+    You can contact the author at :
+    - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+    - Public forum : https://groups.google.com/forum/#!forum/lz4c
+*************************************************************************** */
+
+/* *************************************
+*  Dependencies
+***************************************/
+#include "mem.h"
+#include "error_private.h"       /* ERR_*, ERROR */
+#define FSE_STATIC_LINKING_ONLY  /* FSE_MIN_TABLELOG */
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY  /* HUF_TABLELOG_ABSOLUTEMAX */
+#include "huf.h"
+
+
+/*-****************************************
+*  FSE Error Management
+******************************************/
+unsigned FSE_isError(size_t code) { return ERR_isError(code); }
+
+const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/* **************************************************************
+*  HUF Error Management
+****************************************************************/
+unsigned HUF_isError(size_t code) { return ERR_isError(code); }
+
+const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+
+/*-**************************************************************
+*  FSE NCount encoding-decoding
+****************************************************************/
+static short FSE_abs(short a) { return (short)(a<0 ? -a : a); }
+
+size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
+                 const void* headerBuffer, size_t hbSize)
+{
+    const BYTE* const istart = (const BYTE*) headerBuffer;
+    const BYTE* const iend = istart + hbSize;
+    const BYTE* ip = istart;
+    int nbBits;
+    int remaining;
+    int threshold;
+    U32 bitStream;
+    int bitCount;
+    unsigned charnum = 0;
+    int previous0 = 0;
+
+    if (hbSize < 4) return ERROR(srcSize_wrong);
+    bitStream = MEM_readLE32(ip);
+    nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG;   /* extract tableLog */
+    if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
+    bitStream >>= 4;
+    bitCount = 4;
+    *tableLogPtr = nbBits;
+    remaining = (1<<nbBits)+1;
+    threshold = 1<<nbBits;
+    nbBits++;
+
+    while ((remaining>1) & (charnum<=*maxSVPtr)) {
+        if (previous0) {
+            unsigned n0 = charnum;
+            while ((bitStream & 0xFFFF) == 0xFFFF) {
+                n0 += 24;
+                if (ip < iend-5) {
+                    ip += 2;
+                    bitStream = MEM_readLE32(ip) >> bitCount;
+                } else {
+                    bitStream >>= 16;
+                    bitCount   += 16;
+            }   }
+            while ((bitStream & 3) == 3) {
+                n0 += 3;
+                bitStream >>= 2;
+                bitCount += 2;
+            }
+            n0 += bitStream & 3;
+            bitCount += 2;
+            if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
+            while (charnum < n0) normalizedCounter[charnum++] = 0;
+            if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+                ip += bitCount>>3;
+                bitCount &= 7;
+                bitStream = MEM_readLE32(ip) >> bitCount;
+            } else {
+                bitStream >>= 2;
+        }   }
+        {   short const max = (short)((2*threshold-1)-remaining);
+            short count;
+
+            if ((bitStream & (threshold-1)) < (U32)max) {
+                count = (short)(bitStream & (threshold-1));
+                bitCount   += nbBits-1;
+            } else {
+                count = (short)(bitStream & (2*threshold-1));
+                if (count >= threshold) count -= max;
+                bitCount   += nbBits;
+            }
+
+            count--;   /* extra accuracy */
+            remaining -= FSE_abs(count);
+            normalizedCounter[charnum++] = count;
+            previous0 = !count;
+            while (remaining < threshold) {
+                nbBits--;
+                threshold >>= 1;
+            }
+
+            if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
+                ip += bitCount>>3;
+                bitCount &= 7;
+            } else {
+                bitCount -= (int)(8 * (iend - 4 - ip));
+                ip = iend - 4;
+            }
+            bitStream = MEM_readLE32(ip) >> (bitCount & 31);
+    }   }   /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
+    if (remaining != 1) return ERROR(corruption_detected);
+    if (bitCount > 32) return ERROR(corruption_detected);
+    *maxSVPtr = charnum-1;
+
+    ip += (bitCount+7)>>3;
+    return ip-istart;
+}
+
+
+/*! HUF_readStats() :
+    Read compact Huffman tree, saved by HUF_writeCTable().
+    `huffWeight` is destination buffer.
+    @return : size read from `src` , or an error Code .
+    Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
+*/
+size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+                     U32* nbSymbolsPtr, U32* tableLogPtr,
+                     const void* src, size_t srcSize)
+{
+    U32 weightTotal;
+    const BYTE* ip = (const BYTE*) src;
+    size_t iSize;
+    size_t oSize;
+
+    if (!srcSize) return ERROR(srcSize_wrong);
+    iSize = ip[0];
+    /* memset(huffWeight, 0, hwSize);   *//* is not necessary, even though some analyzer complain ... */
+
+    if (iSize >= 128) {  /* special header */
+        oSize = iSize - 127;
+        iSize = ((oSize+1)/2);
+        if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+        if (oSize >= hwSize) return ERROR(corruption_detected);
+        ip += 1;
+        {   U32 n;
+            for (n=0; n<oSize; n+=2) {
+                huffWeight[n]   = ip[n/2] >> 4;
+                huffWeight[n+1] = ip[n/2] & 15;
+    }   }   }
+    else  {   /* header compressed with FSE (normal case) */
+        if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
+        oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize);   /* max (hwSize-1) values decoded, as last one is implied */
+        if (FSE_isError(oSize)) return oSize;
+    }
+
+    /* collect weight stats */
+    memset(rankStats, 0, (HUF_TABLELOG_ABSOLUTEMAX + 1) * sizeof(U32));
+    weightTotal = 0;
+    {   U32 n; for (n=0; n<oSize; n++) {
+            if (huffWeight[n] >= HUF_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
+            rankStats[huffWeight[n]]++;
+            weightTotal += (1 << huffWeight[n]) >> 1;
+    }   }
+    if (weightTotal == 0) return ERROR(corruption_detected);
+
+    /* get last non-null symbol weight (implied, total must be 2^n) */
+    {   U32 const tableLog = BIT_highbit32(weightTotal) + 1;
+        if (tableLog > HUF_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
+        *tableLogPtr = tableLog;
+        /* determine last weight */
+        {   U32 const total = 1 << tableLog;
+            U32 const rest = total - weightTotal;
+            U32 const verif = 1 << BIT_highbit32(rest);
+            U32 const lastWeight = BIT_highbit32(rest) + 1;
+            if (verif != rest) return ERROR(corruption_detected);    /* last value must be a clean power of 2 */
+            huffWeight[oSize] = (BYTE)lastWeight;
+            rankStats[lastWeight]++;
+    }   }
+
+    /* check tree construction validity */
+    if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected);   /* by construction : at least 2 elts of rank 1, must be even */
+
+    /* results */
+    *nbSymbolsPtr = (U32)(oSize+1);
+    return iSize+1;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/error_private.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,43 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+/* The purpose of this file is to have a single list of error strings embedded in binary */
+
+#include "error_private.h"
+
+const char* ERR_getErrorString(ERR_enum code)
+{
+    static const char* const notErrorCode = "Unspecified error code";
+    switch( code )
+    {
+    case PREFIX(no_error): return "No error detected";
+    case PREFIX(GENERIC):  return "Error (generic)";
+    case PREFIX(prefix_unknown): return "Unknown frame descriptor";
+    case PREFIX(version_unsupported): return "Version not supported";
+    case PREFIX(parameter_unknown): return "Unknown parameter type";
+    case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
+    case PREFIX(frameParameter_unsupportedBy32bits): return "Frame parameter unsupported in 32-bits mode";
+    case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
+    case PREFIX(compressionParameter_unsupported): return "Compression parameter is out of bound";
+    case PREFIX(init_missing): return "Context should be init first";
+    case PREFIX(memory_allocation): return "Allocation error : not enough memory";
+    case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
+    case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
+    case PREFIX(srcSize_wrong): return "Src size incorrect";
+    case PREFIX(corruption_detected): return "Corrupted block detected";
+    case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
+    case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
+    case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
+    case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
+    case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
+    case PREFIX(dictionary_wrong): return "Dictionary mismatch";
+    case PREFIX(maxCode):
+    default: return notErrorCode;
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/error_private.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,76 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+/* Note : this module is expected to remain private, do not expose it */
+
+#ifndef ERROR_H_MODULE
+#define ERROR_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* ****************************************
+*  Dependencies
+******************************************/
+#include <stddef.h>        /* size_t */
+#include "zstd_errors.h"  /* enum list */
+
+
+/* ****************************************
+*  Compiler-specific
+******************************************/
+#if defined(__GNUC__)
+#  define ERR_STATIC static __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+#  define ERR_STATIC static inline
+#elif defined(_MSC_VER)
+#  define ERR_STATIC static __inline
+#else
+#  define ERR_STATIC static  /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+
+/*-****************************************
+*  Customization (error_public.h)
+******************************************/
+typedef ZSTD_ErrorCode ERR_enum;
+#define PREFIX(name) ZSTD_error_##name
+
+
+/*-****************************************
+*  Error codes handling
+******************************************/
+#ifdef ERROR
+#  undef ERROR   /* reported already defined on VS 2015 (Rich Geldreich) */
+#endif
+#define ERROR(name) ((size_t)-PREFIX(name))
+
+ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
+
+ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
+
+
+/*-****************************************
+*  Error Strings
+******************************************/
+
+const char* ERR_getErrorString(ERR_enum code);   /* error_private.c */
+
+ERR_STATIC const char* ERR_getErrorName(size_t code)
+{
+    return ERR_getErrorString(ERR_getErrorCode(code));
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ERROR_H_MODULE */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/fse.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,634 @@
+/* ******************************************************************
+   FSE : Finite State Entropy codec
+   Public Prototypes declaration
+   Copyright (C) 2013-2016, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+   You can contact the author at :
+   - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef FSE_H
+#define FSE_H
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*-*****************************************
+*  Dependencies
+******************************************/
+#include <stddef.h>    /* size_t, ptrdiff_t */
+
+
+/*-****************************************
+*  FSE simple functions
+******************************************/
+/*! FSE_compress() :
+    Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
+    'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
+    @return : size of compressed data (<= dstCapacity).
+    Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
+                     if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
+                     if FSE_isError(return), compression failed (more details using FSE_getErrorName())
+*/
+size_t FSE_compress(void* dst, size_t dstCapacity,
+              const void* src, size_t srcSize);
+
+/*! FSE_decompress():
+    Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
+    into already allocated destination buffer 'dst', of size 'dstCapacity'.
+    @return : size of regenerated data (<= maxDstSize),
+              or an error code, which can be tested using FSE_isError() .
+
+    ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
+    Why ? : making this distinction requires a header.
+    Header management is intentionally delegated to the user layer, which can better manage special cases.
+*/
+size_t FSE_decompress(void* dst,  size_t dstCapacity,
+                const void* cSrc, size_t cSrcSize);
+
+
+/*-*****************************************
+*  Tool functions
+******************************************/
+size_t FSE_compressBound(size_t size);       /* maximum compressed size */
+
+/* Error Management */
+unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
+const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
+
+
+/*-*****************************************
+*  FSE advanced functions
+******************************************/
+/*! FSE_compress2() :
+    Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
+    Both parameters can be defined as '0' to mean : use default value
+    @return : size of compressed data
+    Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
+                     if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
+                     if FSE_isError(return), it's an error code.
+*/
+size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
+
+
+/*-*****************************************
+*  FSE detailed API
+******************************************/
+/*!
+FSE_compress() does the following:
+1. count symbol occurrence from source[] into table count[]
+2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
+3. save normalized counters to memory buffer using writeNCount()
+4. build encoding table 'CTable' from normalized counters
+5. encode the data stream using encoding table 'CTable'
+
+FSE_decompress() does the following:
+1. read normalized counters with readNCount()
+2. build decoding table 'DTable' from normalized counters
+3. decode the data stream using decoding table 'DTable'
+
+The following API allows targeting specific sub-functions for advanced tasks.
+For example, it's possible to compress several blocks using the same 'CTable',
+or to save and provide normalized distribution using external method.
+*/
+
+/* *** COMPRESSION *** */
+
+/*! FSE_count():
+    Provides the precise count of each byte within a table 'count'.
+    'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
+    *maxSymbolValuePtr will be updated if detected smaller than initial value.
+    @return : the count of the most frequent symbol (which is not identified).
+              if return == srcSize, there is only one symbol.
+              Can also return an error code, which can be tested with FSE_isError(). */
+size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
+
+/*! FSE_optimalTableLog():
+    dynamically downsize 'tableLog' when conditions are met.
+    It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
+    @return : recommended tableLog (necessarily <= 'maxTableLog') */
+unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
+
+/*! FSE_normalizeCount():
+    normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
+    'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
+    @return : tableLog,
+              or an errorCode, which can be tested using FSE_isError() */
+size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
+
+/*! FSE_NCountWriteBound():
+    Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
+    Typically useful for allocation purpose. */
+size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_writeNCount():
+    Compactly save 'normalizedCounter' into 'buffer'.
+    @return : size of the compressed table,
+              or an errorCode, which can be tested using FSE_isError(). */
+size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+
+/*! Constructor and Destructor of FSE_CTable.
+    Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
+typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
+FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue);
+void        FSE_freeCTable (FSE_CTable* ct);
+
+/*! FSE_buildCTable():
+    Builds `ct`, which must be already allocated, using FSE_createCTable().
+    @return : 0, or an errorCode, which can be tested using FSE_isError() */
+size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_compress_usingCTable():
+    Compress `src` using `ct` into `dst` which must be already allocated.
+    @return : size of compressed data (<= `dstCapacity`),
+              or 0 if compressed data could not fit into `dst`,
+              or an errorCode, which can be tested using FSE_isError() */
+size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
+
+/*!
+Tutorial :
+----------
+The first step is to count all symbols. FSE_count() does this job very fast.
+Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
+'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
+maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
+FSE_count() will return the number of occurrence of the most frequent symbol.
+This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
+
+The next step is to normalize the frequencies.
+FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
+It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
+You can use 'tableLog'==0 to mean "use default tableLog value".
+If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
+which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
+
+The result of FSE_normalizeCount() will be saved into a table,
+called 'normalizedCounter', which is a table of signed short.
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
+The return value is tableLog if everything proceeded as expected.
+It is 0 if there is a single symbol within distribution.
+If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
+
+'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
+'buffer' must be already allocated.
+For guaranteed success, buffer size must be at least FSE_headerBound().
+The result of the function is the number of bytes written into 'buffer'.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
+
+'normalizedCounter' can then be used to create the compression table 'CTable'.
+The space required by 'CTable' must be already allocated, using FSE_createCTable().
+You can then use FSE_buildCTable() to fill 'CTable'.
+If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
+
+'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
+Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
+The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
+If it returns '0', compressed data could not fit into 'dst'.
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
+*/
+
+
+/* *** DECOMPRESSION *** */
+
+/*! FSE_readNCount():
+    Read compactly saved 'normalizedCounter' from 'rBuffer'.
+    @return : size read from 'rBuffer',
+              or an errorCode, which can be tested using FSE_isError().
+              maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
+size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
+
+/*! Constructor and Destructor of FSE_DTable.
+    Note that its size depends on 'tableLog' */
+typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
+FSE_DTable* FSE_createDTable(unsigned tableLog);
+void        FSE_freeDTable(FSE_DTable* dt);
+
+/*! FSE_buildDTable():
+    Builds 'dt', which must be already allocated, using FSE_createDTable().
+    return : 0, or an errorCode, which can be tested using FSE_isError() */
+size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
+
+/*! FSE_decompress_usingDTable():
+    Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
+    into `dst` which must be already allocated.
+    @return : size of regenerated data (necessarily <= `dstCapacity`),
+              or an errorCode, which can be tested using FSE_isError() */
+size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
+
+/*!
+Tutorial :
+----------
+(Note : these functions only decompress FSE-compressed blocks.
+ If block is uncompressed, use memcpy() instead
+ If block is a single repeated byte, use memset() instead )
+
+The first step is to obtain the normalized frequencies of symbols.
+This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
+In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
+or size the table to handle worst case situations (typically 256).
+FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
+The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
+Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
+
+The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
+This is performed by the function FSE_buildDTable().
+The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
+
+`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
+`cSrcSize` must be strictly correct, otherwise decompression will fail.
+FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
+If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
+*/
+
+
+#ifdef FSE_STATIC_LINKING_ONLY
+
+/* *** Dependency *** */
+#include "bitstream.h"
+
+
+/* *****************************************
+*  Static allocation
+*******************************************/
+/* FSE buffer bounds */
+#define FSE_NCOUNTBOUND 512
+#define FSE_BLOCKBOUND(size) (size + (size>>7))
+#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
+
+/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
+#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
+#define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<maxTableLog))
+
+
+/* *****************************************
+*  FSE advanced API
+*******************************************/
+size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
+/**< same as FSE_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr  */
+
+unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
+/**< same as FSE_optimalTableLog(), which used `minus==2` */
+
+size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
+/**< build a fake FSE_CTable, designed to not compress an input, where each symbol uses nbBits */
+
+size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
+/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
+
+size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
+/**< build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
+
+size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
+/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
+
+
+/* *****************************************
+*  FSE symbol compression API
+*******************************************/
+/*!
+   This API consists of small unitary functions, which highly benefit from being inlined.
+   You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
+   Visual seems to do it automatically.
+   For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
+   If none of these solutions is applicable, include "fse.c" directly.
+*/
+typedef struct
+{
+    ptrdiff_t   value;
+    const void* stateTable;
+    const void* symbolTT;
+    unsigned    stateLog;
+} FSE_CState_t;
+
+static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
+
+static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
+
+static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
+
+/**<
+These functions are inner components of FSE_compress_usingCTable().
+They allow the creation of custom streams, mixing multiple tables and bit sources.
+
+A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
+So the first symbol you will encode is the last you will decode, like a LIFO stack.
+
+You will need a few variables to track your CStream. They are :
+
+FSE_CTable    ct;         // Provided by FSE_buildCTable()
+BIT_CStream_t bitStream;  // bitStream tracking structure
+FSE_CState_t  state;      // State tracking structure (can have several)
+
+
+The first thing to do is to init bitStream and state.
+    size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
+    FSE_initCState(&state, ct);
+
+Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
+You can then encode your input data, byte after byte.
+FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
+Remember decoding will be done in reverse direction.
+    FSE_encodeByte(&bitStream, &state, symbol);
+
+At any time, you can also add any bit sequence.
+Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
+    BIT_addBits(&bitStream, bitField, nbBits);
+
+The above methods don't commit data to memory, they just store it into local register, for speed.
+Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
+Writing data to memory is a manual operation, performed by the flushBits function.
+    BIT_flushBits(&bitStream);
+
+Your last FSE encoding operation shall be to flush your last state value(s).
+    FSE_flushState(&bitStream, &state);
+
+Finally, you must close the bitStream.
+The function returns the size of CStream in bytes.
+If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
+If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
+    size_t size = BIT_closeCStream(&bitStream);
+*/
+
+
+/* *****************************************
+*  FSE symbol decompression API
+*******************************************/
+typedef struct
+{
+    size_t      state;
+    const void* table;   /* precise table may vary, depending on U16 */
+} FSE_DState_t;
+
+
+static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
+
+static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+
+static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
+
+/**<
+Let's now decompose FSE_decompress_usingDTable() into its unitary components.
+You will decode FSE-encoded symbols from the bitStream,
+and also any other bitFields you put in, **in reverse order**.
+
+You will need a few variables to track your bitStream. They are :
+
+BIT_DStream_t DStream;    // Stream context
+FSE_DState_t  DState;     // State context. Multiple ones are possible
+FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
+
+The first thing to do is to init the bitStream.
+    errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
+
+You should then retrieve your initial state(s)
+(in reverse flushing order if you have several ones) :
+    errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
+
+You can then decode your data, symbol after symbol.
+For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
+Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
+    unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
+
+You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
+Note : maximum allowed nbBits is 25, for 32-bits compatibility
+    size_t bitField = BIT_readBits(&DStream, nbBits);
+
+All above operations only read from local register (which size depends on size_t).
+Refueling the register from memory is manually performed by the reload method.
+    endSignal = FSE_reloadDStream(&DStream);
+
+BIT_reloadDStream() result tells if there is still some more data to read from DStream.
+BIT_DStream_unfinished : there is still some data left into the DStream.
+BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
+BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
+BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
+
+When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
+to properly detect the exact end of stream.
+After each decoded symbol, check if DStream is fully consumed using this simple test :
+    BIT_reloadDStream(&DStream) >= BIT_DStream_completed
+
+When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
+Checking if DStream has reached its end is performed by :
+    BIT_endOfDStream(&DStream);
+Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
+    FSE_endOfDState(&DState);
+*/
+
+
+/* *****************************************
+*  FSE unsafe API
+*******************************************/
+static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
+
+
+/* *****************************************
+*  Implementation of inlined functions
+*******************************************/
+typedef struct {
+    int deltaFindState;
+    U32 deltaNbBits;
+} FSE_symbolCompressionTransform; /* total 8 bytes */
+
+MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
+{
+    const void* ptr = ct;
+    const U16* u16ptr = (const U16*) ptr;
+    const U32 tableLog = MEM_read16(ptr);
+    statePtr->value = (ptrdiff_t)1<<tableLog;
+    statePtr->stateTable = u16ptr+2;
+    statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
+    statePtr->stateLog = tableLog;
+}
+
+
+/*! FSE_initCState2() :
+*   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
+*   uses the smallest state value possible, saving the cost of this symbol */
+MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
+{
+    FSE_initCState(statePtr, ct);
+    {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
+        const U16* stateTable = (const U16*)(statePtr->stateTable);
+        U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
+        statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
+        statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
+    }
+}
+
+MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
+{
+    const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
+    const U16* const stateTable = (const U16*)(statePtr->stateTable);
+    U32 nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
+    BIT_addBits(bitC, statePtr->value, nbBitsOut);
+    statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
+}
+
+MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
+{
+    BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
+    BIT_flushBits(bitC);
+}
+
+
+/* ======    Decompression    ====== */
+
+typedef struct {
+    U16 tableLog;
+    U16 fastMode;
+} FSE_DTableHeader;   /* sizeof U32 */
+
+typedef struct
+{
+    unsigned short newState;
+    unsigned char  symbol;
+    unsigned char  nbBits;
+} FSE_decode_t;   /* size == U32 */
+
+MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
+{
+    const void* ptr = dt;
+    const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
+    DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
+    BIT_reloadDStream(bitD);
+    DStatePtr->table = dt + 1;
+}
+
+MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
+{
+    FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+    return DInfo.symbol;
+}
+
+MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+    FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+    U32 const nbBits = DInfo.nbBits;
+    size_t const lowBits = BIT_readBits(bitD, nbBits);
+    DStatePtr->state = DInfo.newState + lowBits;
+}
+
+MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+    FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+    U32 const nbBits = DInfo.nbBits;
+    BYTE const symbol = DInfo.symbol;
+    size_t const lowBits = BIT_readBits(bitD, nbBits);
+
+    DStatePtr->state = DInfo.newState + lowBits;
+    return symbol;
+}
+
+/*! FSE_decodeSymbolFast() :
+    unsafe, only works if no symbol has a probability > 50% */
+MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
+{
+    FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
+    U32 const nbBits = DInfo.nbBits;
+    BYTE const symbol = DInfo.symbol;
+    size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
+
+    DStatePtr->state = DInfo.newState + lowBits;
+    return symbol;
+}
+
+MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
+{
+    return DStatePtr->state == 0;
+}
+
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/* **************************************************************
+*  Tuning parameters
+****************************************************************/
+/*!MEMORY_USAGE :
+*  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
+*  Increasing memory usage improves compression ratio
+*  Reduced memory usage can improve speed, due to cache effect
+*  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
+#ifndef FSE_MAX_MEMORY_USAGE
+#  define FSE_MAX_MEMORY_USAGE 14
+#endif
+#ifndef FSE_DEFAULT_MEMORY_USAGE
+#  define FSE_DEFAULT_MEMORY_USAGE 13
+#endif
+
+/*!FSE_MAX_SYMBOL_VALUE :
+*  Maximum symbol value authorized.
+*  Required for proper stack allocation */
+#ifndef FSE_MAX_SYMBOL_VALUE
+#  define FSE_MAX_SYMBOL_VALUE 255
+#endif
+
+/* **************************************************************
+*  template functions type & suffix
+****************************************************************/
+#define FSE_FUNCTION_TYPE BYTE
+#define FSE_FUNCTION_EXTENSION
+#define FSE_DECODE_TYPE FSE_decode_t
+
+
+#endif   /* !FSE_COMMONDEFS_ONLY */
+
+
+/* ***************************************************************
+*  Constants
+*****************************************************************/
+#define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
+#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
+#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
+#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
+#define FSE_MIN_TABLELOG 5
+
+#define FSE_TABLELOG_ABSOLUTE_MAX 15
+#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
+#  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
+#endif
+
+#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
+
+
+#endif /* FSE_STATIC_LINKING_ONLY */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif  /* FSE_H */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/fse_decompress.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,329 @@
+/* ******************************************************************
+   FSE : Finite State Entropy decoder
+   Copyright (C) 2013-2015, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+    You can contact the author at :
+    - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+    - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+
+/* **************************************************************
+*  Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER    /* Visual Studio */
+#  define FORCE_INLINE static __forceinline
+#  include <intrin.h>                    /* For Visual 2005 */
+#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
+#  pragma warning(disable : 4214)        /* disable: C4214: non-int bitfields */
+#else
+#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
+#    ifdef __GNUC__
+#      define FORCE_INLINE static inline __attribute__((always_inline))
+#    else
+#      define FORCE_INLINE static inline
+#    endif
+#  else
+#    define FORCE_INLINE static
+#  endif /* __STDC_VERSION__ */
+#endif
+
+
+/* **************************************************************
+*  Includes
+****************************************************************/
+#include <stdlib.h>     /* malloc, free, qsort */
+#include <string.h>     /* memcpy, memset */
+#include <stdio.h>      /* printf (debug) */
+#include "bitstream.h"
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+
+
+/* **************************************************************
+*  Error Management
+****************************************************************/
+#define FSE_isError ERR_isError
+#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
+
+/* check and forward error code */
+#define CHECK_F(f) { size_t const e = f; if (FSE_isError(e)) return e; }
+
+
+/* **************************************************************
+*  Complex types
+****************************************************************/
+typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
+
+
+/* **************************************************************
+*  Templates
+****************************************************************/
+/*
+  designed to be included
+  for type-specific functions (template emulation in C)
+  Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+#  error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+#  error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+/* Function templates */
+FSE_DTable* FSE_createDTable (unsigned tableLog)
+{
+    if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
+    return (FSE_DTable*)malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
+}
+
+void FSE_freeDTable (FSE_DTable* dt)
+{
+    free(dt);
+}
+
+size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+    void* const tdPtr = dt+1;   /* because *dt is unsigned, 32-bits aligned on 32-bits */
+    FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
+    U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
+
+    U32 const maxSV1 = maxSymbolValue + 1;
+    U32 const tableSize = 1 << tableLog;
+    U32 highThreshold = tableSize-1;
+
+    /* Sanity Checks */
+    if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
+    if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
+
+    /* Init, lay down lowprob symbols */
+    {   FSE_DTableHeader DTableH;
+        DTableH.tableLog = (U16)tableLog;
+        DTableH.fastMode = 1;
+        {   S16 const largeLimit= (S16)(1 << (tableLog-1));
+            U32 s;
+            for (s=0; s<maxSV1; s++) {
+                if (normalizedCounter[s]==-1) {
+                    tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
+                    symbolNext[s] = 1;
+                } else {
+                    if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
+                    symbolNext[s] = normalizedCounter[s];
+        }   }   }
+        memcpy(dt, &DTableH, sizeof(DTableH));
+    }
+
+    /* Spread symbols */
+    {   U32 const tableMask = tableSize-1;
+        U32 const step = FSE_TABLESTEP(tableSize);
+        U32 s, position = 0;
+        for (s=0; s<maxSV1; s++) {
+            int i;
+            for (i=0; i<normalizedCounter[s]; i++) {
+                tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
+                position = (position + step) & tableMask;
+                while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
+        }   }
+        if (position!=0) return ERROR(GENERIC);   /* position must reach all cells once, otherwise normalizedCounter is incorrect */
+    }
+
+    /* Build Decoding table */
+    {   U32 u;
+        for (u=0; u<tableSize; u++) {
+            FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
+            U16 nextState = symbolNext[symbol]++;
+            tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
+            tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
+    }   }
+
+    return 0;
+}
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/*-*******************************************************
+*  Decompression (Byte symbols)
+*********************************************************/
+size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
+{
+    void* ptr = dt;
+    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+    void* dPtr = dt + 1;
+    FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
+
+    DTableH->tableLog = 0;
+    DTableH->fastMode = 0;
+
+    cell->newState = 0;
+    cell->symbol = symbolValue;
+    cell->nbBits = 0;
+
+    return 0;
+}
+
+
+size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
+{
+    void* ptr = dt;
+    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
+    void* dPtr = dt + 1;
+    FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
+    const unsigned tableSize = 1 << nbBits;
+    const unsigned tableMask = tableSize - 1;
+    const unsigned maxSV1 = tableMask+1;
+    unsigned s;
+
+    /* Sanity checks */
+    if (nbBits < 1) return ERROR(GENERIC);         /* min size */
+
+    /* Build Decoding Table */
+    DTableH->tableLog = (U16)nbBits;
+    DTableH->fastMode = 1;
+    for (s=0; s<maxSV1; s++) {
+        dinfo[s].newState = 0;
+        dinfo[s].symbol = (BYTE)s;
+        dinfo[s].nbBits = (BYTE)nbBits;
+    }
+
+    return 0;
+}
+
+FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
+          void* dst, size_t maxDstSize,
+    const void* cSrc, size_t cSrcSize,
+    const FSE_DTable* dt, const unsigned fast)
+{
+    BYTE* const ostart = (BYTE*) dst;
+    BYTE* op = ostart;
+    BYTE* const omax = op + maxDstSize;
+    BYTE* const olimit = omax-3;
+
+    BIT_DStream_t bitD;
+    FSE_DState_t state1;
+    FSE_DState_t state2;
+
+    /* Init */
+    CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
+
+    FSE_initDState(&state1, &bitD, dt);
+    FSE_initDState(&state2, &bitD, dt);
+
+#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
+
+    /* 4 symbols per loop */
+    for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
+        op[0] = FSE_GETSYMBOL(&state1);
+
+        if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
+            BIT_reloadDStream(&bitD);
+
+        op[1] = FSE_GETSYMBOL(&state2);
+
+        if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
+            { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
+
+        op[2] = FSE_GETSYMBOL(&state1);
+
+        if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
+            BIT_reloadDStream(&bitD);
+
+        op[3] = FSE_GETSYMBOL(&state2);
+    }
+
+    /* tail */
+    /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
+    while (1) {
+        if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+        *op++ = FSE_GETSYMBOL(&state1);
+        if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
+            *op++ = FSE_GETSYMBOL(&state2);
+            break;
+        }
+
+        if (op>(omax-2)) return ERROR(dstSize_tooSmall);
+        *op++ = FSE_GETSYMBOL(&state2);
+        if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
+            *op++ = FSE_GETSYMBOL(&state1);
+            break;
+    }   }
+
+    return op-ostart;
+}
+
+
+size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
+                            const void* cSrc, size_t cSrcSize,
+                            const FSE_DTable* dt)
+{
+    const void* ptr = dt;
+    const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
+    const U32 fastMode = DTableH->fastMode;
+
+    /* select fast mode (static) */
+    if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
+    return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
+}
+
+
+size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
+{
+    const BYTE* const istart = (const BYTE*)cSrc;
+    const BYTE* ip = istart;
+    short counting[FSE_MAX_SYMBOL_VALUE+1];
+    DTable_max_t dt;   /* Static analyzer seems unable to understand this table will be properly initialized later */
+    unsigned tableLog;
+    unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+
+    if (cSrcSize<2) return ERROR(srcSize_wrong);   /* too small input size */
+
+    /* normal FSE decoding mode */
+    {   size_t const NCountLength = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
+        if (FSE_isError(NCountLength)) return NCountLength;
+        if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong);   /* too small input size */
+        ip += NCountLength;
+        cSrcSize -= NCountLength;
+    }
+
+    CHECK_F( FSE_buildDTable (dt, counting, maxSymbolValue, tableLog) );
+
+    return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);   /* always return, even if it is an error code */
+}
+
+
+
+#endif   /* FSE_COMMONDEFS_ONLY */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/huf.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,228 @@
+/* ******************************************************************
+   Huffman coder, part of New Generation Entropy library
+   header file
+   Copyright (C) 2013-2016, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+   You can contact the author at :
+   - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
+****************************************************************** */
+#ifndef HUF_H_298734234
+#define HUF_H_298734234
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/* *** Dependencies *** */
+#include <stddef.h>    /* size_t */
+
+
+/* *** simple functions *** */
+/**
+HUF_compress() :
+    Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
+    'dst' buffer must be already allocated.
+    Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
+    `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
+    @return : size of compressed data (<= `dstCapacity`).
+    Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
+                     if return == 1, srcData is a single repeated byte symbol (RLE compression).
+                     if HUF_isError(return), compression failed (more details using HUF_getErrorName())
+*/
+size_t HUF_compress(void* dst, size_t dstCapacity,
+              const void* src, size_t srcSize);
+
+/**
+HUF_decompress() :
+    Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
+    into already allocated buffer 'dst', of minimum size 'dstSize'.
+    `dstSize` : **must** be the ***exact*** size of original (uncompressed) data.
+    Note : in contrast with FSE, HUF_decompress can regenerate
+           RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
+           because it knows size to regenerate.
+    @return : size of regenerated data (== dstSize),
+              or an error code, which can be tested using HUF_isError()
+*/
+size_t HUF_decompress(void* dst,  size_t dstSize,
+                const void* cSrc, size_t cSrcSize);
+
+
+/* ****************************************
+*  Tool functions
+******************************************/
+#define HUF_BLOCKSIZE_MAX (128 * 1024)
+size_t HUF_compressBound(size_t size);       /**< maximum compressed size (worst case) */
+
+/* Error Management */
+unsigned    HUF_isError(size_t code);        /**< tells if a return value is an error code */
+const char* HUF_getErrorName(size_t code);   /**< provides error code string (useful for debugging) */
+
+
+/* *** Advanced function *** */
+
+/** HUF_compress2() :
+*   Same as HUF_compress(), but offers direct control over `maxSymbolValue` and `tableLog` */
+size_t HUF_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
+
+
+#ifdef HUF_STATIC_LINKING_ONLY
+
+/* *** Dependencies *** */
+#include "mem.h"   /* U32 */
+
+
+/* *** Constants *** */
+#define HUF_TABLELOG_ABSOLUTEMAX  16   /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
+#define HUF_TABLELOG_MAX  12           /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
+#define HUF_TABLELOG_DEFAULT  11       /* tableLog by default, when not specified */
+#define HUF_SYMBOLVALUE_MAX 255
+#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
+#  error "HUF_TABLELOG_MAX is too large !"
+#endif
+
+
+/* ****************************************
+*  Static allocation
+******************************************/
+/* HUF buffer bounds */
+#define HUF_CTABLEBOUND 129
+#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8)   /* only true if incompressible pre-filtered with fast heuristic */
+#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
+
+/* static allocation of HUF's Compression Table */
+#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
+    U32 name##hb[maxSymbolValue+1]; \
+    void* name##hv = &(name##hb); \
+    HUF_CElt* name = (HUF_CElt*)(name##hv)   /* no final ; */
+
+/* static allocation of HUF's DTable */
+typedef U32 HUF_DTable;
+#define HUF_DTABLE_SIZE(maxTableLog)   (1 + (1<<(maxTableLog)))
+#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
+        HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1)*0x1000001) }
+#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
+        HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog)*0x1000001) }
+
+
+/* ****************************************
+*  Advanced decompression functions
+******************************************/
+size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /**< single-symbol decoder */
+size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /**< double-symbols decoder */
+
+size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /**< decodes RLE and uncompressed */
+size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
+size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /**< single-symbol decoder */
+size_t HUF_decompress4X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /**< double-symbols decoder */
+
+size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /**< single-symbol decoder */
+size_t HUF_decompress1X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /**< double-symbols decoder */
+
+
+/* ****************************************
+*  HUF detailed API
+******************************************/
+/*!
+HUF_compress() does the following:
+1. count symbol occurrence from source[] into table count[] using FSE_count()
+2. (optional) refine tableLog using HUF_optimalTableLog()
+3. build Huffman table from count using HUF_buildCTable()
+4. save Huffman table to memory buffer using HUF_writeCTable()
+5. encode the data stream using HUF_compress4X_usingCTable()
+
+The following API allows targeting specific sub-functions for advanced tasks.
+For example, it's possible to compress several blocks using the same 'CTable',
+or to save and regenerate 'CTable' using external methods.
+*/
+/* FSE_count() : find it within "fse.h" */
+unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
+typedef struct HUF_CElt_s HUF_CElt;   /* incomplete type */
+size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits);
+size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
+size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
+
+
+/*! HUF_readStats() :
+    Read compact Huffman tree, saved by HUF_writeCTable().
+    `huffWeight` is destination buffer.
+    @return : size read from `src` , or an error Code .
+    Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
+size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
+                     U32* nbSymbolsPtr, U32* tableLogPtr,
+                     const void* src, size_t srcSize);
+
+/** HUF_readCTable() :
+*   Loading a CTable saved with HUF_writeCTable() */
+size_t HUF_readCTable (HUF_CElt* CTable, unsigned maxSymbolValue, const void* src, size_t srcSize);
+
+
+/*
+HUF_decompress() does the following:
+1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
+2. build Huffman table from save, using HUF_readDTableXn()
+3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
+*/
+
+/** HUF_selectDecoder() :
+*   Tells which decoder is likely to decode faster,
+*   based on a set of pre-determined metrics.
+*   @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
+*   Assumption : 0 < cSrcSize < dstSize <= 128 KB */
+U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
+
+size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
+size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize);
+
+size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+
+
+/* single stream variants */
+
+size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
+size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
+
+size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /* single-symbol decoder */
+size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /* double-symbol decoder */
+
+size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+size_t HUF_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
+
+
+#endif /* HUF_STATIC_LINKING_ONLY */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif   /* HUF_H_298734234 */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/mem.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,370 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+#ifndef MEM_H_MODULE
+#define MEM_H_MODULE
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*-****************************************
+*  Dependencies
+******************************************/
+#include <stddef.h>     /* size_t, ptrdiff_t */
+#include <string.h>     /* memcpy */
+
+
+/*-****************************************
+*  Compiler specifics
+******************************************/
+#if defined(_MSC_VER)   /* Visual Studio */
+#   include <stdlib.h>  /* _byteswap_ulong */
+#   include <intrin.h>  /* _byteswap_* */
+#endif
+#if defined(__GNUC__)
+#  define MEM_STATIC static __inline __attribute__((unused))
+#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+#  define MEM_STATIC static inline
+#elif defined(_MSC_VER)
+#  define MEM_STATIC static __inline
+#else
+#  define MEM_STATIC static  /* this version may generate warnings for unused static functions; disable the relevant warning */
+#endif
+
+/* code only tested on 32 and 64 bits systems */
+#define MEM_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }
+MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
+
+
+/*-**************************************************************
+*  Basic Types
+*****************************************************************/
+#if  !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+# include <stdint.h>
+  typedef  uint8_t BYTE;
+  typedef uint16_t U16;
+  typedef  int16_t S16;
+  typedef uint32_t U32;
+  typedef  int32_t S32;
+  typedef uint64_t U64;
+  typedef  int64_t S64;
+#else
+  typedef unsigned char       BYTE;
+  typedef unsigned short      U16;
+  typedef   signed short      S16;
+  typedef unsigned int        U32;
+  typedef   signed int        S32;
+  typedef unsigned long long  U64;
+  typedef   signed long long  S64;
+#endif
+
+
+/*-**************************************************************
+*  Memory I/O
+*****************************************************************/
+/* MEM_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method is portable but violate C standard.
+ *            It can generate buggy code on targets depending on alignment.
+ *            In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef MEM_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
+#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+#    define MEM_FORCE_MEMORY_ACCESS 2
+#  elif defined(__INTEL_COMPILER) /*|| defined(_MSC_VER)*/ || \
+  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+#    define MEM_FORCE_MEMORY_ACCESS 1
+#  endif
+#endif
+
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
+
+MEM_STATIC unsigned MEM_isLittleEndian(void)
+{
+    const union { U32 u; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
+    return one.c[0];
+}
+
+#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
+
+/* violates C standard, by lying on structure alignment.
+Only use if no other choice to achieve best performance on target platform */
+MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
+MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
+MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
+MEM_STATIC U64 MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
+MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
+MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
+
+#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
+	__pragma( pack(push, 1) )
+    typedef union { U16 u16; U32 u32; U64 u64; size_t st; } unalign;
+    __pragma( pack(pop) )
+#else
+    typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
+#endif
+
+MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
+MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+MEM_STATIC U64 MEM_readST(const void* ptr) { return ((const unalign*)ptr)->st; }
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
+MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; }
+MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; }
+
+#else
+
+/* default method, safe and standard.
+   can sometimes prove slower */
+
+MEM_STATIC U16 MEM_read16(const void* memPtr)
+{
+    U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U32 MEM_read32(const void* memPtr)
+{
+    U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC U64 MEM_read64(const void* memPtr)
+{
+    U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC size_t MEM_readST(const void* memPtr)
+{
+    size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
+}
+
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
+{
+    memcpy(memPtr, &value, sizeof(value));
+}
+
+MEM_STATIC void MEM_write32(void* memPtr, U32 value)
+{
+    memcpy(memPtr, &value, sizeof(value));
+}
+
+MEM_STATIC void MEM_write64(void* memPtr, U64 value)
+{
+    memcpy(memPtr, &value, sizeof(value));
+}
+
+#endif /* MEM_FORCE_MEMORY_ACCESS */
+
+MEM_STATIC U32 MEM_swap32(U32 in)
+{
+#if defined(_MSC_VER)     /* Visual Studio */
+    return _byteswap_ulong(in);
+#elif defined (__GNUC__)
+    return __builtin_bswap32(in);
+#else
+    return  ((in << 24) & 0xff000000 ) |
+            ((in <<  8) & 0x00ff0000 ) |
+            ((in >>  8) & 0x0000ff00 ) |
+            ((in >> 24) & 0x000000ff );
+#endif
+}
+
+MEM_STATIC U64 MEM_swap64(U64 in)
+{
+#if defined(_MSC_VER)     /* Visual Studio */
+    return _byteswap_uint64(in);
+#elif defined (__GNUC__)
+    return __builtin_bswap64(in);
+#else
+    return  ((in << 56) & 0xff00000000000000ULL) |
+            ((in << 40) & 0x00ff000000000000ULL) |
+            ((in << 24) & 0x0000ff0000000000ULL) |
+            ((in << 8)  & 0x000000ff00000000ULL) |
+            ((in >> 8)  & 0x00000000ff000000ULL) |
+            ((in >> 24) & 0x0000000000ff0000ULL) |
+            ((in >> 40) & 0x000000000000ff00ULL) |
+            ((in >> 56) & 0x00000000000000ffULL);
+#endif
+}
+
+MEM_STATIC size_t MEM_swapST(size_t in)
+{
+    if (MEM_32bits())
+        return (size_t)MEM_swap32((U32)in);
+    else
+        return (size_t)MEM_swap64((U64)in);
+}
+
+/*=== Little endian r/w ===*/
+
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
+{
+    if (MEM_isLittleEndian())
+        return MEM_read16(memPtr);
+    else {
+        const BYTE* p = (const BYTE*)memPtr;
+        return (U16)(p[0] + (p[1]<<8));
+    }
+}
+
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
+{
+    if (MEM_isLittleEndian()) {
+        MEM_write16(memPtr, val);
+    } else {
+        BYTE* p = (BYTE*)memPtr;
+        p[0] = (BYTE)val;
+        p[1] = (BYTE)(val>>8);
+    }
+}
+
+MEM_STATIC U32 MEM_readLE24(const void* memPtr)
+{
+    return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
+}
+
+MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
+{
+    MEM_writeLE16(memPtr, (U16)val);
+    ((BYTE*)memPtr)[2] = (BYTE)(val>>16);
+}
+
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
+{
+    if (MEM_isLittleEndian())
+        return MEM_read32(memPtr);
+    else
+        return MEM_swap32(MEM_read32(memPtr));
+}
+
+MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
+{
+    if (MEM_isLittleEndian())
+        MEM_write32(memPtr, val32);
+    else
+        MEM_write32(memPtr, MEM_swap32(val32));
+}
+
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
+{
+    if (MEM_isLittleEndian())
+        return MEM_read64(memPtr);
+    else
+        return MEM_swap64(MEM_read64(memPtr));
+}
+
+MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
+{
+    if (MEM_isLittleEndian())
+        MEM_write64(memPtr, val64);
+    else
+        MEM_write64(memPtr, MEM_swap64(val64));
+}
+
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
+{
+    if (MEM_32bits())
+        return (size_t)MEM_readLE32(memPtr);
+    else
+        return (size_t)MEM_readLE64(memPtr);
+}
+
+MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
+{
+    if (MEM_32bits())
+        MEM_writeLE32(memPtr, (U32)val);
+    else
+        MEM_writeLE64(memPtr, (U64)val);
+}
+
+/*=== Big endian r/w ===*/
+
+MEM_STATIC U32 MEM_readBE32(const void* memPtr)
+{
+    if (MEM_isLittleEndian())
+        return MEM_swap32(MEM_read32(memPtr));
+    else
+        return MEM_read32(memPtr);
+}
+
+MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
+{
+    if (MEM_isLittleEndian())
+        MEM_write32(memPtr, MEM_swap32(val32));
+    else
+        MEM_write32(memPtr, val32);
+}
+
+MEM_STATIC U64 MEM_readBE64(const void* memPtr)
+{
+    if (MEM_isLittleEndian())
+        return MEM_swap64(MEM_read64(memPtr));
+    else
+        return MEM_read64(memPtr);
+}
+
+MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
+{
+    if (MEM_isLittleEndian())
+        MEM_write64(memPtr, MEM_swap64(val64));
+    else
+        MEM_write64(memPtr, val64);
+}
+
+MEM_STATIC size_t MEM_readBEST(const void* memPtr)
+{
+    if (MEM_32bits())
+        return (size_t)MEM_readBE32(memPtr);
+    else
+        return (size_t)MEM_readBE64(memPtr);
+}
+
+MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
+{
+    if (MEM_32bits())
+        MEM_writeBE32(memPtr, (U32)val);
+    else
+        MEM_writeBE64(memPtr, (U64)val);
+}
+
+
+/* function safe only for comparisons */
+MEM_STATIC U32 MEM_readMINMATCH(const void* memPtr, U32 length)
+{
+    switch (length)
+    {
+    default :
+    case 4 : return MEM_read32(memPtr);
+    case 3 : if (MEM_isLittleEndian())
+                return MEM_read32(memPtr)<<8;
+             else
+                return MEM_read32(memPtr)>>8;
+    }
+}
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* MEM_H_MODULE */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/xxhash.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,867 @@
+/*
+*  xxHash - Fast Hash algorithm
+*  Copyright (C) 2012-2016, Yann Collet
+*
+*  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+*
+*  Redistribution and use in source and binary forms, with or without
+*  modification, are permitted provided that the following conditions are
+*  met:
+*
+*  * Redistributions of source code must retain the above copyright
+*  notice, this list of conditions and the following disclaimer.
+*  * Redistributions in binary form must reproduce the above
+*  copyright notice, this list of conditions and the following disclaimer
+*  in the documentation and/or other materials provided with the
+*  distribution.
+*
+*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*
+*  You can contact the author at :
+*  - xxHash homepage: http://www.xxhash.com
+*  - xxHash source repository : https://github.com/Cyan4973/xxHash
+*/
+
+
+/* *************************************
+*  Tuning parameters
+***************************************/
+/*!XXH_FORCE_MEMORY_ACCESS :
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
+ * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
+ * The below switch allow to select different access method for improved performance.
+ * Method 0 (default) : use `memcpy()`. Safe and portable.
+ * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
+ *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
+ * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
+ *            It can generate buggy code on targets which do not support unaligned memory accesses.
+ *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
+ * See http://stackoverflow.com/a/32095106/646947 for details.
+ * Prefer these methods in priority order (0 > 1 > 2)
+ */
+#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
+#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
+#    define XXH_FORCE_MEMORY_ACCESS 2
+#  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
+  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
+#    define XXH_FORCE_MEMORY_ACCESS 1
+#  endif
+#endif
+
+/*!XXH_ACCEPT_NULL_INPUT_POINTER :
+ * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
+ * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
+ * By default, this option is disabled. To enable it, uncomment below define :
+ */
+/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
+
+/*!XXH_FORCE_NATIVE_FORMAT :
+ * By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
+ * Results are therefore identical for little-endian and big-endian CPU.
+ * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
+ * Should endian-independance be of no importance for your application, you may set the #define below to 1,
+ * to improve speed for Big-endian CPU.
+ * This option has no impact on Little_Endian CPU.
+ */
+#ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
+#  define XXH_FORCE_NATIVE_FORMAT 0
+#endif
+
+/*!XXH_FORCE_ALIGN_CHECK :
+ * This is a minor performance trick, only useful with lots of very small keys.
+ * It means : check for aligned/unaligned input.
+ * The check costs one initial branch per hash; set to 0 when the input data
+ * is guaranteed to be aligned.
+ */
+#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
+#  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
+#    define XXH_FORCE_ALIGN_CHECK 0
+#  else
+#    define XXH_FORCE_ALIGN_CHECK 1
+#  endif
+#endif
+
+
+/* *************************************
+*  Includes & Memory related functions
+***************************************/
+/* Modify the local functions below should you wish to use some other memory routines */
+/* for malloc(), free() */
+#include <stdlib.h>
+static void* XXH_malloc(size_t s) { return malloc(s); }
+static void  XXH_free  (void* p)  { free(p); }
+/* for memcpy() */
+#include <string.h>
+static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
+
+#define XXH_STATIC_LINKING_ONLY
+#include "xxhash.h"
+
+
+/* *************************************
+*  Compiler Specific Options
+***************************************/
+#ifdef _MSC_VER    /* Visual Studio */
+#  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
+#  define FORCE_INLINE static __forceinline
+#else
+#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
+#    ifdef __GNUC__
+#      define FORCE_INLINE static inline __attribute__((always_inline))
+#    else
+#      define FORCE_INLINE static inline
+#    endif
+#  else
+#    define FORCE_INLINE static
+#  endif /* __STDC_VERSION__ */
+#endif
+
+
+/* *************************************
+*  Basic Types
+***************************************/
+#ifndef MEM_MODULE
+# define MEM_MODULE
+# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+#   include <stdint.h>
+    typedef uint8_t  BYTE;
+    typedef uint16_t U16;
+    typedef uint32_t U32;
+    typedef  int32_t S32;
+    typedef uint64_t U64;
+#  else
+    typedef unsigned char      BYTE;
+    typedef unsigned short     U16;
+    typedef unsigned int       U32;
+    typedef   signed int       S32;
+    typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
+#  endif
+#endif
+
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
+
+/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
+static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
+static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
+
+/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
+/* currently only defined for gcc and icc */
+typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
+
+static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
+
+#else
+
+/* portable and safe solution. Generally efficient.
+ * see : http://stackoverflow.com/a/32095106/646947
+ */
+
+static U32 XXH_read32(const void* memPtr)
+{
+    U32 val;
+    memcpy(&val, memPtr, sizeof(val));
+    return val;
+}
+
+static U64 XXH_read64(const void* memPtr)
+{
+    U64 val;
+    memcpy(&val, memPtr, sizeof(val));
+    return val;
+}
+
+#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+
+/* ****************************************
+*  Compiler-specific Functions and Macros
+******************************************/
+#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
+#if defined(_MSC_VER)
+#  define XXH_rotl32(x,r) _rotl(x,r)
+#  define XXH_rotl64(x,r) _rotl64(x,r)
+#else
+#  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
+#  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
+#endif
+
+#if defined(_MSC_VER)     /* Visual Studio */
+#  define XXH_swap32 _byteswap_ulong
+#  define XXH_swap64 _byteswap_uint64
+#elif GCC_VERSION >= 403
+#  define XXH_swap32 __builtin_bswap32
+#  define XXH_swap64 __builtin_bswap64
+#else
+static U32 XXH_swap32 (U32 x)
+{
+    return  ((x << 24) & 0xff000000 ) |
+            ((x <<  8) & 0x00ff0000 ) |
+            ((x >>  8) & 0x0000ff00 ) |
+            ((x >> 24) & 0x000000ff );
+}
+static U64 XXH_swap64 (U64 x)
+{
+    return  ((x << 56) & 0xff00000000000000ULL) |
+            ((x << 40) & 0x00ff000000000000ULL) |
+            ((x << 24) & 0x0000ff0000000000ULL) |
+            ((x << 8)  & 0x000000ff00000000ULL) |
+            ((x >> 8)  & 0x00000000ff000000ULL) |
+            ((x >> 24) & 0x0000000000ff0000ULL) |
+            ((x >> 40) & 0x000000000000ff00ULL) |
+            ((x >> 56) & 0x00000000000000ffULL);
+}
+#endif
+
+
+/* *************************************
+*  Architecture Macros
+***************************************/
+typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
+
+/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
+#ifndef XXH_CPU_LITTLE_ENDIAN
+    static const int g_one = 1;
+#   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
+#endif
+
+
+/* ***************************
+*  Memory reads
+*****************************/
+typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
+
+FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
+{
+    if (align==XXH_unaligned)
+        return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
+    else
+        return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
+}
+
+FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
+{
+    return XXH_readLE32_align(ptr, endian, XXH_unaligned);
+}
+
+static U32 XXH_readBE32(const void* ptr)
+{
+    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
+}
+
+FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
+{
+    if (align==XXH_unaligned)
+        return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
+    else
+        return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
+}
+
+FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
+{
+    return XXH_readLE64_align(ptr, endian, XXH_unaligned);
+}
+
+static U64 XXH_readBE64(const void* ptr)
+{
+    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
+}
+
+
+/* *************************************
+*  Macros
+***************************************/
+#define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
+
+
+/* *************************************
+*  Constants
+***************************************/
+static const U32 PRIME32_1 = 2654435761U;
+static const U32 PRIME32_2 = 2246822519U;
+static const U32 PRIME32_3 = 3266489917U;
+static const U32 PRIME32_4 =  668265263U;
+static const U32 PRIME32_5 =  374761393U;
+
+static const U64 PRIME64_1 = 11400714785074694791ULL;
+static const U64 PRIME64_2 = 14029467366897019727ULL;
+static const U64 PRIME64_3 =  1609587929392839161ULL;
+static const U64 PRIME64_4 =  9650029242287828579ULL;
+static const U64 PRIME64_5 =  2870177450012600261ULL;
+
+XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
+
+
+/* **************************
+*  Utils
+****************************/
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
+{
+    memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
+{
+    memcpy(dstState, srcState, sizeof(*dstState));
+}
+
+
+/* ***************************
+*  Simple Hash Functions
+*****************************/
+
+static U32 XXH32_round(U32 seed, U32 input)
+{
+    seed += input * PRIME32_2;
+    seed  = XXH_rotl32(seed, 13);
+    seed *= PRIME32_1;
+    return seed;
+}
+
+FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
+{
+    const BYTE* p = (const BYTE*)input;
+    const BYTE* bEnd = p + len;
+    U32 h32;
+#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+    if (p==NULL) {
+        len=0;
+        bEnd=p=(const BYTE*)(size_t)16;
+    }
+#endif
+
+    if (len>=16) {
+        const BYTE* const limit = bEnd - 16;
+        U32 v1 = seed + PRIME32_1 + PRIME32_2;
+        U32 v2 = seed + PRIME32_2;
+        U32 v3 = seed + 0;
+        U32 v4 = seed - PRIME32_1;
+
+        do {
+            v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
+            v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
+            v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
+            v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
+        } while (p<=limit);
+
+        h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
+    } else {
+        h32  = seed + PRIME32_5;
+    }
+
+    h32 += (U32) len;
+
+    while (p+4<=bEnd) {
+        h32 += XXH_get32bits(p) * PRIME32_3;
+        h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
+        p+=4;
+    }
+
+    while (p<bEnd) {
+        h32 += (*p) * PRIME32_5;
+        h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
+        p++;
+    }
+
+    h32 ^= h32 >> 15;
+    h32 *= PRIME32_2;
+    h32 ^= h32 >> 13;
+    h32 *= PRIME32_3;
+    h32 ^= h32 >> 16;
+
+    return h32;
+}
+
+
+XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
+{
+#if 0
+    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+    XXH32_CREATESTATE_STATIC(state);
+    XXH32_reset(state, seed);
+    XXH32_update(state, input, len);
+    return XXH32_digest(state);
+#else
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if (XXH_FORCE_ALIGN_CHECK) {
+        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
+            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+                return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+            else
+                return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+    }   }
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+    else
+        return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+
+static U64 XXH64_round(U64 acc, U64 input)
+{
+    acc += input * PRIME64_2;
+    acc  = XXH_rotl64(acc, 31);
+    acc *= PRIME64_1;
+    return acc;
+}
+
+static U64 XXH64_mergeRound(U64 acc, U64 val)
+{
+    val  = XXH64_round(0, val);
+    acc ^= val;
+    acc  = acc * PRIME64_1 + PRIME64_4;
+    return acc;
+}
+
+FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
+{
+    const BYTE* p = (const BYTE*)input;
+    const BYTE* const bEnd = p + len;
+    U64 h64;
+#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+    if (p==NULL) {
+        len=0;
+        bEnd=p=(const BYTE*)(size_t)32;
+    }
+#endif
+
+    if (len>=32) {
+        const BYTE* const limit = bEnd - 32;
+        U64 v1 = seed + PRIME64_1 + PRIME64_2;
+        U64 v2 = seed + PRIME64_2;
+        U64 v3 = seed + 0;
+        U64 v4 = seed - PRIME64_1;
+
+        do {
+            v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
+            v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
+            v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
+            v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
+        } while (p<=limit);
+
+        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+        h64 = XXH64_mergeRound(h64, v1);
+        h64 = XXH64_mergeRound(h64, v2);
+        h64 = XXH64_mergeRound(h64, v3);
+        h64 = XXH64_mergeRound(h64, v4);
+
+    } else {
+        h64  = seed + PRIME64_5;
+    }
+
+    h64 += (U64) len;
+
+    while (p+8<=bEnd) {
+        U64 const k1 = XXH64_round(0, XXH_get64bits(p));
+        h64 ^= k1;
+        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
+        p+=8;
+    }
+
+    if (p+4<=bEnd) {
+        h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
+        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
+        p+=4;
+    }
+
+    while (p<bEnd) {
+        h64 ^= (*p) * PRIME64_5;
+        h64 = XXH_rotl64(h64, 11) * PRIME64_1;
+        p++;
+    }
+
+    h64 ^= h64 >> 33;
+    h64 *= PRIME64_2;
+    h64 ^= h64 >> 29;
+    h64 *= PRIME64_3;
+    h64 ^= h64 >> 32;
+
+    return h64;
+}
+
+
+XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
+{
+#if 0
+    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+    XXH64_CREATESTATE_STATIC(state);
+    XXH64_reset(state, seed);
+    XXH64_update(state, input, len);
+    return XXH64_digest(state);
+#else
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if (XXH_FORCE_ALIGN_CHECK) {
+        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
+            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+                return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+            else
+                return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+    }   }
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+    else
+        return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+
+/* **************************************************
+*  Advanced Hash Functions
+****************************************************/
+
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
+{
+    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
+}
+XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
+{
+    XXH_free(statePtr);
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
+{
+    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
+}
+XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
+{
+    XXH_free(statePtr);
+    return XXH_OK;
+}
+
+
+/*** Hash feed ***/
+
+XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
+{
+    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
+    memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
+    state.v1 = seed + PRIME32_1 + PRIME32_2;
+    state.v2 = seed + PRIME32_2;
+    state.v3 = seed + 0;
+    state.v4 = seed - PRIME32_1;
+    memcpy(statePtr, &state, sizeof(state));
+    return XXH_OK;
+}
+
+
+XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
+{
+    XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
+    memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
+    state.v1 = seed + PRIME64_1 + PRIME64_2;
+    state.v2 = seed + PRIME64_2;
+    state.v3 = seed + 0;
+    state.v4 = seed - PRIME64_1;
+    memcpy(statePtr, &state, sizeof(state));
+    return XXH_OK;
+}
+
+
+FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
+{
+    const BYTE* p = (const BYTE*)input;
+    const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+    if (input==NULL) return XXH_ERROR;
+#endif
+
+    state->total_len_32 += (unsigned)len;
+    state->large_len |= (len>=16) | (state->total_len_32>=16);
+
+    if (state->memsize + len < 16)  {   /* fill in tmp buffer */
+        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
+        state->memsize += (unsigned)len;
+        return XXH_OK;
+    }
+
+    if (state->memsize) {   /* some data left from previous update */
+        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
+        {   const U32* p32 = state->mem32;
+            state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
+            state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
+            state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
+            state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
+        }
+        p += 16-state->memsize;
+        state->memsize = 0;
+    }
+
+    if (p <= bEnd-16) {
+        const BYTE* const limit = bEnd - 16;
+        U32 v1 = state->v1;
+        U32 v2 = state->v2;
+        U32 v3 = state->v3;
+        U32 v4 = state->v4;
+
+        do {
+            v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
+            v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
+            v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
+            v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
+        } while (p<=limit);
+
+        state->v1 = v1;
+        state->v2 = v2;
+        state->v3 = v3;
+        state->v4 = v4;
+    }
+
+    if (p < bEnd) {
+        XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
+        state->memsize = (unsigned)(bEnd-p);
+    }
+
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
+{
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
+    else
+        return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
+{
+    const BYTE * p = (const BYTE*)state->mem32;
+    const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
+    U32 h32;
+
+    if (state->large_len) {
+        h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
+    } else {
+        h32 = state->v3 /* == seed */ + PRIME32_5;
+    }
+
+    h32 += state->total_len_32;
+
+    while (p+4<=bEnd) {
+        h32 += XXH_readLE32(p, endian) * PRIME32_3;
+        h32  = XXH_rotl32(h32, 17) * PRIME32_4;
+        p+=4;
+    }
+
+    while (p<bEnd) {
+        h32 += (*p) * PRIME32_5;
+        h32  = XXH_rotl32(h32, 11) * PRIME32_1;
+        p++;
+    }
+
+    h32 ^= h32 >> 15;
+    h32 *= PRIME32_2;
+    h32 ^= h32 >> 13;
+    h32 *= PRIME32_3;
+    h32 ^= h32 >> 16;
+
+    return h32;
+}
+
+
+XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
+{
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH32_digest_endian(state_in, XXH_littleEndian);
+    else
+        return XXH32_digest_endian(state_in, XXH_bigEndian);
+}
+
+
+
+/* **** XXH64 **** */
+
+FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
+{
+    const BYTE* p = (const BYTE*)input;
+    const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+    if (input==NULL) return XXH_ERROR;
+#endif
+
+    state->total_len += len;
+
+    if (state->memsize + len < 32) {  /* fill in tmp buffer */
+        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
+        state->memsize += (U32)len;
+        return XXH_OK;
+    }
+
+    if (state->memsize) {   /* tmp buffer is full */
+        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
+        state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
+        state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
+        state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
+        state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
+        p += 32-state->memsize;
+        state->memsize = 0;
+    }
+
+    if (p+32 <= bEnd) {
+        const BYTE* const limit = bEnd - 32;
+        U64 v1 = state->v1;
+        U64 v2 = state->v2;
+        U64 v3 = state->v3;
+        U64 v4 = state->v4;
+
+        do {
+            v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
+            v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
+            v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
+            v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
+        } while (p<=limit);
+
+        state->v1 = v1;
+        state->v2 = v2;
+        state->v3 = v3;
+        state->v4 = v4;
+    }
+
+    if (p < bEnd) {
+        XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
+        state->memsize = (unsigned)(bEnd-p);
+    }
+
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
+{
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
+    else
+        return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
+{
+    const BYTE * p = (const BYTE*)state->mem64;
+    const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
+    U64 h64;
+
+    if (state->total_len >= 32) {
+        U64 const v1 = state->v1;
+        U64 const v2 = state->v2;
+        U64 const v3 = state->v3;
+        U64 const v4 = state->v4;
+
+        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+        h64 = XXH64_mergeRound(h64, v1);
+        h64 = XXH64_mergeRound(h64, v2);
+        h64 = XXH64_mergeRound(h64, v3);
+        h64 = XXH64_mergeRound(h64, v4);
+    } else {
+        h64  = state->v3 + PRIME64_5;
+    }
+
+    h64 += (U64) state->total_len;
+
+    while (p+8<=bEnd) {
+        U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
+        h64 ^= k1;
+        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
+        p+=8;
+    }
+
+    if (p+4<=bEnd) {
+        h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
+        h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
+        p+=4;
+    }
+
+    while (p<bEnd) {
+        h64 ^= (*p) * PRIME64_5;
+        h64  = XXH_rotl64(h64, 11) * PRIME64_1;
+        p++;
+    }
+
+    h64 ^= h64 >> 33;
+    h64 *= PRIME64_2;
+    h64 ^= h64 >> 29;
+    h64 *= PRIME64_3;
+    h64 ^= h64 >> 32;
+
+    return h64;
+}
+
+
+XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
+{
+    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+        return XXH64_digest_endian(state_in, XXH_littleEndian);
+    else
+        return XXH64_digest_endian(state_in, XXH_bigEndian);
+}
+
+
+/* **************************
+*  Canonical representation
+****************************/
+
+/*! Default XXH result types are basic unsigned 32 and 64 bits.
+*   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
+*   These functions allow transformation of hash result into and from its canonical format.
+*   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
+*/
+
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
+{
+    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
+    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
+    memcpy(dst, &hash, sizeof(*dst));
+}
+
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
+{
+    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
+    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
+    memcpy(dst, &hash, sizeof(*dst));
+}
+
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
+{
+    return XXH_readBE32(src);
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
+{
+    return XXH_readBE64(src);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/xxhash.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,309 @@
+/*
+   xxHash - Extremely Fast Hash algorithm
+   Header File
+   Copyright (C) 2012-2016, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+   You can contact the author at :
+   - xxHash source repository : https://github.com/Cyan4973/xxHash
+*/
+
+/* Notice extracted from xxHash homepage :
+
+xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
+It also successfully passes all tests from the SMHasher suite.
+
+Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
+
+Name            Speed       Q.Score   Author
+xxHash          5.4 GB/s     10
+CrapWow         3.2 GB/s      2       Andrew
+MumurHash 3a    2.7 GB/s     10       Austin Appleby
+SpookyHash      2.0 GB/s     10       Bob Jenkins
+SBox            1.4 GB/s      9       Bret Mulvey
+Lookup3         1.2 GB/s      9       Bob Jenkins
+SuperFastHash   1.2 GB/s      1       Paul Hsieh
+CityHash64      1.05 GB/s    10       Pike & Alakuijala
+FNV             0.55 GB/s     5       Fowler, Noll, Vo
+CRC32           0.43 GB/s     9
+MD5-32          0.33 GB/s    10       Ronald L. Rivest
+SHA1-32         0.28 GB/s    10
+
+Q.Score is a measure of quality of the hash function.
+It depends on successfully passing SMHasher test set.
+10 is a perfect score.
+
+A 64-bits version, named XXH64, is available since r35.
+It offers much better speed, but for 64-bits applications only.
+Name     Speed on 64 bits    Speed on 32 bits
+XXH64       13.8 GB/s            1.9 GB/s
+XXH32        6.8 GB/s            6.0 GB/s
+*/
+
+#ifndef XXHASH_H_5627135585666179
+#define XXHASH_H_5627135585666179 1
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+#ifndef XXH_NAMESPACE
+#  define XXH_NAMESPACE ZSTD_  /* Zstandard specific */
+#endif
+
+
+/* ****************************
+*  Definitions
+******************************/
+#include <stddef.h>   /* size_t */
+typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
+
+
+/* ****************************
+*  API modifier
+******************************/
+/** XXH_PRIVATE_API
+*   This is useful if you want to include xxhash functions in `static` mode
+*   in order to inline them, and remove their symbol from the public list.
+*   Methodology :
+*     #define XXH_PRIVATE_API
+*     #include "xxhash.h"
+*   `xxhash.c` is automatically included.
+*   It's not useful to compile and link it as a separate module anymore.
+*/
+#ifdef XXH_PRIVATE_API
+#  ifndef XXH_STATIC_LINKING_ONLY
+#    define XXH_STATIC_LINKING_ONLY
+#  endif
+#  if defined(__GNUC__)
+#    define XXH_PUBLIC_API static __inline __attribute__((unused))
+#  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+#    define XXH_PUBLIC_API static inline
+#  elif defined(_MSC_VER)
+#    define XXH_PUBLIC_API static __inline
+#  else
+#    define XXH_PUBLIC_API static   /* this version may generate warnings for unused static functions; disable the relevant warning */
+#  endif
+#else
+#  define XXH_PUBLIC_API   /* do nothing */
+#endif /* XXH_PRIVATE_API */
+
+/*!XXH_NAMESPACE, aka Namespace Emulation :
+
+If you want to include _and expose_ xxHash functions from within your own library,
+but also want to avoid symbol collisions with another library which also includes xxHash,
+
+you can use XXH_NAMESPACE, to automatically prefix any public symbol from xxhash library
+with the value of XXH_NAMESPACE (so avoid to keep it NULL and avoid numeric values).
+
+Note that no change is required within the calling program as long as it includes `xxhash.h` :
+regular symbol name will be automatically translated by this header.
+*/
+#ifdef XXH_NAMESPACE
+#  define XXH_CAT(A,B) A##B
+#  define XXH_NAME2(A,B) XXH_CAT(A,B)
+#  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
+#  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
+#  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
+#  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
+#  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
+#  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
+#  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
+#  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
+#  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
+#  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
+#  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
+#  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
+#  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
+#  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
+#  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
+#  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
+#  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
+#  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
+#  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
+#endif
+
+
+/* *************************************
+*  Version
+***************************************/
+#define XXH_VERSION_MAJOR    0
+#define XXH_VERSION_MINOR    6
+#define XXH_VERSION_RELEASE  2
+#define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
+XXH_PUBLIC_API unsigned XXH_versionNumber (void);
+
+
+/* ****************************
+*  Simple Hash Functions
+******************************/
+typedef unsigned int       XXH32_hash_t;
+typedef unsigned long long XXH64_hash_t;
+
+XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed);
+XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed);
+
+/*!
+XXH32() :
+    Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input".
+    The memory between input & input+length must be valid (allocated and read-accessible).
+    "seed" can be used to alter the result predictably.
+    Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
+XXH64() :
+    Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
+    "seed" can be used to alter the result predictably.
+    This function runs 2x faster on 64-bits systems, but slower on 32-bits systems (see benchmark).
+*/
+
+
+/* ****************************
+*  Streaming Hash Functions
+******************************/
+typedef struct XXH32_state_s XXH32_state_t;   /* incomplete type */
+typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
+
+/*! State allocation, compatible with dynamic libraries */
+
+XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
+XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
+
+XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
+XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
+
+
+/* hash streaming */
+
+XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, unsigned int seed);
+XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
+XXH_PUBLIC_API XXH32_hash_t  XXH32_digest (const XXH32_state_t* statePtr);
+
+XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH64_state_t* statePtr, unsigned long long seed);
+XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
+XXH_PUBLIC_API XXH64_hash_t  XXH64_digest (const XXH64_state_t* statePtr);
+
+/*
+These functions generate the xxHash of an input provided in multiple segments.
+Note that, for small input, they are slower than single-call functions, due to state management.
+For small input, prefer `XXH32()` and `XXH64()` .
+
+XXH state must first be allocated, using XXH*_createState() .
+
+Start a new hash by initializing state with a seed, using XXH*_reset().
+
+Then, feed the hash state by calling XXH*_update() as many times as necessary.
+Obviously, input must be allocated and read accessible.
+The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
+
+Finally, a hash value can be produced anytime, by using XXH*_digest().
+This function returns the nn-bits hash as an int or long long.
+
+It's still possible to continue inserting input into the hash state after a digest,
+and generate some new hashes later on, by calling again XXH*_digest().
+
+When done, free XXH state space if it was allocated dynamically.
+*/
+
+
+/* **************************
+*  Utils
+****************************/
+#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* ! C99 */
+#  define restrict   /* disable restrict */
+#endif
+
+XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dst_state, const XXH32_state_t* restrict src_state);
+XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dst_state, const XXH64_state_t* restrict src_state);
+
+
+/* **************************
+*  Canonical representation
+****************************/
+typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
+typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
+
+XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
+XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
+
+XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
+XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
+
+/* Default result type for XXH functions are primitive unsigned 32 and 64 bits.
+*  The canonical representation uses human-readable write convention, aka big-endian (large digits first).
+*  These functions allow transformation of hash result into and from its canonical format.
+*  This way, hash values can be written into a file / memory, and remain comparable on different systems and programs.
+*/
+
+
+#ifdef XXH_STATIC_LINKING_ONLY
+
+/* ================================================================================================
+   This section contains definitions which are not guaranteed to remain stable.
+   They may change in future versions, becoming incompatible with a different version of the library.
+   They shall only be used with static linking.
+   Never use these definitions in association with dynamic linking !
+=================================================================================================== */
+
+/* These definitions are only meant to allow allocation of XXH state
+   statically, on stack, or in a struct for example.
+   Do not use members directly. */
+
+   struct XXH32_state_s {
+       unsigned total_len_32;
+       unsigned large_len;
+       unsigned v1;
+       unsigned v2;
+       unsigned v3;
+       unsigned v4;
+       unsigned mem32[4];   /* buffer defined as U32 for alignment */
+       unsigned memsize;
+       unsigned reserved;   /* never read nor write, will be removed in a future version */
+   };   /* typedef'd to XXH32_state_t */
+
+   struct XXH64_state_s {
+       unsigned long long total_len;
+       unsigned long long v1;
+       unsigned long long v2;
+       unsigned long long v3;
+       unsigned long long v4;
+       unsigned long long mem64[4];   /* buffer defined as U64 for alignment */
+       unsigned memsize;
+       unsigned reserved[2];          /* never read nor write, will be removed in a future version */
+   };   /* typedef'd to XXH64_state_t */
+
+
+#  ifdef XXH_PRIVATE_API
+#    include "xxhash.c"   /* include xxhash functions as `static`, for inlining */
+#  endif
+
+#endif /* XXH_STATIC_LINKING_ONLY */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* XXHASH_H_5627135585666179 */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/zbuff.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,191 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+/* ***************************************************************
+*  NOTES/WARNINGS
+*****************************************************************/
+/* The streaming API defined here will soon be deprecated by the
+* new one in 'zstd.h'; consider migrating towards newer streaming
+* API. See 'lib/README.md'.
+*****************************************************************/
+
+#ifndef ZSTD_BUFFERED_H_23987
+#define ZSTD_BUFFERED_H_23987
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* *************************************
+*  Dependencies
+***************************************/
+#include <stddef.h>      /* size_t */
+
+
+/* ***************************************************************
+*  Compiler specifics
+*****************************************************************/
+/* ZSTD_DLL_EXPORT :
+*  Enable exporting of functions when building a Windows DLL */
+#if defined(_WIN32) && defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
+#  define ZSTDLIB_API __declspec(dllexport)
+#else
+#  define ZSTDLIB_API
+#endif
+
+
+/* *************************************
+*  Streaming functions
+***************************************/
+/* This is the easier "buffered" streaming API,
+*  using an internal buffer to lift all restrictions on user-provided buffers
+*  which can be any size, any place, for both input and output.
+*  ZBUFF and ZSTD are 100% interoperable,
+*  frames created by one can be decoded by the other one */
+
+typedef struct ZBUFF_CCtx_s ZBUFF_CCtx;
+ZSTDLIB_API ZBUFF_CCtx* ZBUFF_createCCtx(void);
+ZSTDLIB_API size_t      ZBUFF_freeCCtx(ZBUFF_CCtx* cctx);
+
+ZSTDLIB_API size_t ZBUFF_compressInit(ZBUFF_CCtx* cctx, int compressionLevel);
+ZSTDLIB_API size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
+
+ZSTDLIB_API size_t ZBUFF_compressContinue(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr, const void* src, size_t* srcSizePtr);
+ZSTDLIB_API size_t ZBUFF_compressFlush(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
+ZSTDLIB_API size_t ZBUFF_compressEnd(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
+
+/*-*************************************************
+*  Streaming compression - howto
+*
+*  A ZBUFF_CCtx object is required to track streaming operation.
+*  Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
+*  ZBUFF_CCtx objects can be reused multiple times.
+*
+*  Start by initializing ZBUF_CCtx.
+*  Use ZBUFF_compressInit() to start a new compression operation.
+*  Use ZBUFF_compressInitDictionary() for a compression which requires a dictionary.
+*
+*  Use ZBUFF_compressContinue() repetitively to consume input stream.
+*  *srcSizePtr and *dstCapacityPtr can be any size.
+*  The function will report how many bytes were read or written within *srcSizePtr and *dstCapacityPtr.
+*  Note that it may not consume the entire input, in which case it's up to the caller to present again remaining data.
+*  The content of `dst` will be overwritten (up to *dstCapacityPtr) at each call, so save its content if it matters or change @dst .
+*  @return : a hint to preferred nb of bytes to use as input for next function call (it's just a hint, to improve latency)
+*            or an error code, which can be tested using ZBUFF_isError().
+*
+*  At any moment, it's possible to flush whatever data remains within buffer, using ZBUFF_compressFlush().
+*  The nb of bytes written into `dst` will be reported into *dstCapacityPtr.
+*  Note that the function cannot output more than *dstCapacityPtr,
+*  therefore, some content might still be left into internal buffer if *dstCapacityPtr is too small.
+*  @return : nb of bytes still present into internal buffer (0 if it's empty)
+*            or an error code, which can be tested using ZBUFF_isError().
+*
+*  ZBUFF_compressEnd() instructs to finish a frame.
+*  It will perform a flush and write frame epilogue.
+*  The epilogue is required for decoders to consider a frame completed.
+*  Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
+*  In which case, call again ZBUFF_compressFlush() to complete the flush.
+*  @return : nb of bytes still present into internal buffer (0 if it's empty)
+*            or an error code, which can be tested using ZBUFF_isError().
+*
+*  Hint : _recommended buffer_ sizes (not compulsory) : ZBUFF_recommendedCInSize() / ZBUFF_recommendedCOutSize()
+*  input : ZBUFF_recommendedCInSize==128 KB block size is the internal unit, use this value to reduce intermediate stages (better latency)
+*  output : ZBUFF_recommendedCOutSize==ZSTD_compressBound(128 KB) + 3 + 3 : ensures it's always possible to write/flush/end a full block. Skip some buffering.
+*  By using both, it ensures that input will be entirely consumed, and output will always contain the result, reducing intermediate buffering.
+* **************************************************/
+
+
+typedef struct ZBUFF_DCtx_s ZBUFF_DCtx;
+ZSTDLIB_API ZBUFF_DCtx* ZBUFF_createDCtx(void);
+ZSTDLIB_API size_t      ZBUFF_freeDCtx(ZBUFF_DCtx* dctx);
+
+ZSTDLIB_API size_t ZBUFF_decompressInit(ZBUFF_DCtx* dctx);
+ZSTDLIB_API size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* dctx, const void* dict, size_t dictSize);
+
+ZSTDLIB_API size_t ZBUFF_decompressContinue(ZBUFF_DCtx* dctx,
+                                            void* dst, size_t* dstCapacityPtr,
+                                      const void* src, size_t* srcSizePtr);
+
+/*-***************************************************************************
+*  Streaming decompression howto
+*
+*  A ZBUFF_DCtx object is required to track streaming operations.
+*  Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
+*  Use ZBUFF_decompressInit() to start a new decompression operation,
+*   or ZBUFF_decompressInitDictionary() if decompression requires a dictionary.
+*  Note that ZBUFF_DCtx objects can be re-init multiple times.
+*
+*  Use ZBUFF_decompressContinue() repetitively to consume your input.
+*  *srcSizePtr and *dstCapacityPtr can be any size.
+*  The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+*  Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
+*  The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
+*  @return : 0 when a frame is completely decoded and fully flushed,
+*            1 when there is still some data left within internal buffer to flush,
+*            >1 when more data is expected, with value being a suggested next input size (it's just a hint, which helps latency),
+*            or an error code, which can be tested using ZBUFF_isError().
+*
+*  Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize()
+*  output : ZBUFF_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
+*  input  : ZBUFF_recommendedDInSize == 128KB + 3;
+*           just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
+* *******************************************************************************/
+
+
+/* *************************************
+*  Tool functions
+***************************************/
+ZSTDLIB_API unsigned ZBUFF_isError(size_t errorCode);
+ZSTDLIB_API const char* ZBUFF_getErrorName(size_t errorCode);
+
+/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
+*   These sizes are just hints, they tend to offer better latency */
+ZSTDLIB_API size_t ZBUFF_recommendedCInSize(void);
+ZSTDLIB_API size_t ZBUFF_recommendedCOutSize(void);
+ZSTDLIB_API size_t ZBUFF_recommendedDInSize(void);
+ZSTDLIB_API size_t ZBUFF_recommendedDOutSize(void);
+
+
+#ifdef ZBUFF_STATIC_LINKING_ONLY
+
+/* ====================================================================================
+ * The definitions in this section are considered experimental.
+ * They should never be used in association with a dynamic library, as they may change in the future.
+ * They are provided for advanced usages.
+ * Use them only in association with static linking.
+ * ==================================================================================== */
+
+/*--- Dependency ---*/
+#define ZSTD_STATIC_LINKING_ONLY   /* ZSTD_parameters, ZSTD_customMem */
+#include "zstd.h"
+
+
+/*--- Custom memory allocator ---*/
+/*! ZBUFF_createCCtx_advanced() :
+ *  Create a ZBUFF compression context using external alloc and free functions */
+ZSTDLIB_API ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem);
+
+/*! ZBUFF_createDCtx_advanced() :
+ *  Create a ZBUFF decompression context using external alloc and free functions */
+ZSTDLIB_API ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem);
+
+
+/*--- Advanced Streaming Initialization ---*/
+ZSTDLIB_API size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
+                                               const void* dict, size_t dictSize,
+                                               ZSTD_parameters params, unsigned long long pledgedSrcSize);
+
+#endif /* ZBUFF_STATIC_LINKING_ONLY */
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif  /* ZSTD_BUFFERED_H_23987 */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/zstd_common.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,83 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+
+
+/*-*************************************
+*  Dependencies
+***************************************/
+#include <stdlib.h>         /* malloc */
+#include "error_private.h"
+#define ZSTD_STATIC_LINKING_ONLY
+#include "zstd.h"           /* declaration of ZSTD_isError, ZSTD_getErrorName, ZSTD_getErrorCode, ZSTD_getErrorString, ZSTD_versionNumber */
+#include "zbuff.h"          /* declaration of ZBUFF_isError, ZBUFF_getErrorName */
+
+
+/*-****************************************
+*  Version
+******************************************/
+unsigned ZSTD_versionNumber (void) { return ZSTD_VERSION_NUMBER; }
+
+
+/*-****************************************
+*  ZSTD Error Management
+******************************************/
+/*! ZSTD_isError() :
+*   tells if a return value is an error code */
+unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
+
+/*! ZSTD_getErrorName() :
+*   provides error code string from function result (useful for debugging) */
+const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
+
+/*! ZSTD_getError() :
+*   convert a `size_t` function result into a proper ZSTD_errorCode enum */
+ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
+
+/*! ZSTD_getErrorString() :
+*   provides error code string from enum */
+const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorName(code); }
+
+
+/* **************************************************************
+*  ZBUFF Error Management
+****************************************************************/
+unsigned ZBUFF_isError(size_t errorCode) { return ERR_isError(errorCode); }
+
+const char* ZBUFF_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
+
+
+
+/*=**************************************************************
+*  Custom allocator
+****************************************************************/
+/* default uses stdlib */
+void* ZSTD_defaultAllocFunction(void* opaque, size_t size)
+{
+    void* address = malloc(size);
+    (void)opaque;
+    return address;
+}
+
+void ZSTD_defaultFreeFunction(void* opaque, void* address)
+{
+    (void)opaque;
+    free(address);
+}
+
+void* ZSTD_malloc(size_t size, ZSTD_customMem customMem)
+{
+    return customMem.customAlloc(customMem.opaque, size);
+}
+
+void ZSTD_free(void* ptr, ZSTD_customMem customMem)
+{
+    if (ptr!=NULL)
+        customMem.customFree(customMem.opaque, ptr);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/zstd_errors.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,60 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+#ifndef ZSTD_ERRORS_H_398273423
+#define ZSTD_ERRORS_H_398273423
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/*===== dependency =====*/
+#include <stddef.h>   /* size_t */
+
+
+/*-****************************************
+*  error codes list
+******************************************/
+typedef enum {
+  ZSTD_error_no_error,
+  ZSTD_error_GENERIC,
+  ZSTD_error_prefix_unknown,
+  ZSTD_error_version_unsupported,
+  ZSTD_error_parameter_unknown,
+  ZSTD_error_frameParameter_unsupported,
+  ZSTD_error_frameParameter_unsupportedBy32bits,
+  ZSTD_error_frameParameter_windowTooLarge,
+  ZSTD_error_compressionParameter_unsupported,
+  ZSTD_error_init_missing,
+  ZSTD_error_memory_allocation,
+  ZSTD_error_stage_wrong,
+  ZSTD_error_dstSize_tooSmall,
+  ZSTD_error_srcSize_wrong,
+  ZSTD_error_corruption_detected,
+  ZSTD_error_checksum_wrong,
+  ZSTD_error_tableLog_tooLarge,
+  ZSTD_error_maxSymbolValue_tooLarge,
+  ZSTD_error_maxSymbolValue_tooSmall,
+  ZSTD_error_dictionary_corrupted,
+  ZSTD_error_dictionary_wrong,
+  ZSTD_error_maxCode
+} ZSTD_ErrorCode;
+
+/*! ZSTD_getErrorCode() :
+    convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
+    which can be used to compare directly with enum list published into "error_public.h" */
+ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
+const char* ZSTD_getErrorString(ZSTD_ErrorCode code);
+
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif /* ZSTD_ERRORS_H_398273423 */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/common/zstd_internal.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,267 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+#ifndef ZSTD_CCOMMON_H_MODULE
+#define ZSTD_CCOMMON_H_MODULE
+
+/*-*******************************************************
+*  Compiler specifics
+*********************************************************/
+#ifdef _MSC_VER    /* Visual Studio */
+#  define FORCE_INLINE static __forceinline
+#  include <intrin.h>                    /* For Visual 2005 */
+#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
+#  pragma warning(disable : 4324)        /* disable: C4324: padded structure */
+#  pragma warning(disable : 4100)        /* disable: C4100: unreferenced formal parameter */
+#else
+#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
+#    ifdef __GNUC__
+#      define FORCE_INLINE static inline __attribute__((always_inline))
+#    else
+#      define FORCE_INLINE static inline
+#    endif
+#  else
+#    define FORCE_INLINE static
+#  endif /* __STDC_VERSION__ */
+#endif
+
+#ifdef _MSC_VER
+#  define FORCE_NOINLINE static __declspec(noinline)
+#else
+#  ifdef __GNUC__
+#    define FORCE_NOINLINE static __attribute__((__noinline__))
+#  else
+#    define FORCE_NOINLINE static
+#  endif
+#endif
+
+
+/*-*************************************
+*  Dependencies
+***************************************/
+#include "mem.h"
+#include "error_private.h"
+#define ZSTD_STATIC_LINKING_ONLY
+#include "zstd.h"
+
+
+/*-*************************************
+*  shared macros
+***************************************/
+#define MIN(a,b) ((a)<(b) ? (a) : (b))
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
+#define CHECK_F(f) { size_t const errcod = f; if (ERR_isError(errcod)) return errcod; }  /* check and Forward error code */
+#define CHECK_E(f, e) { size_t const errcod = f; if (ERR_isError(errcod)) return ERROR(e); }  /* check and send Error code */
+
+
+/*-*************************************
+*  Common constants
+***************************************/
+#define ZSTD_OPT_NUM    (1<<12)
+#define ZSTD_DICT_MAGIC  0xEC30A437   /* v0.7+ */
+
+#define ZSTD_REP_NUM      3                 /* number of repcodes */
+#define ZSTD_REP_CHECK    (ZSTD_REP_NUM)    /* number of repcodes to check by the optimal parser */
+#define ZSTD_REP_MOVE     (ZSTD_REP_NUM-1)
+#define ZSTD_REP_MOVE_OPT (ZSTD_REP_NUM)
+static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
+
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define BIT7 128
+#define BIT6  64
+#define BIT5  32
+#define BIT4  16
+#define BIT1   2
+#define BIT0   1
+
+#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
+static const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
+static const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
+
+#define ZSTD_BLOCKHEADERSIZE 3   /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
+static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
+typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
+
+#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
+#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */)   /* for a non-null block */
+
+#define HufLog 12
+typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
+
+#define LONGNBSEQ 0x7F00
+
+#define MINMATCH 3
+#define EQUAL_READ32 4
+
+#define Litbits  8
+#define MaxLit ((1<<Litbits) - 1)
+#define MaxML  52
+#define MaxLL  35
+#define MaxOff 28
+#define MaxSeq MAX(MaxLL, MaxML)   /* Assumption : MaxOff < MaxLL,MaxML */
+#define MLFSELog    9
+#define LLFSELog    9
+#define OffFSELog   8
+
+static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                                      1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
+                                     13,14,15,16 };
+static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
+                                             2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
+                                            -1,-1,-1,-1 };
+#define LL_DEFAULTNORMLOG 6  /* for static allocation */
+static const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
+
+static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                                      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+                                      1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
+                                     12,13,14,15,16 };
+static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
+                                             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+                                             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
+                                            -1,-1,-1,-1,-1 };
+#define ML_DEFAULTNORMLOG 6  /* for static allocation */
+static const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
+
+static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
+                                              1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
+#define OF_DEFAULTNORMLOG 5  /* for static allocation */
+static const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
+
+
+/*-*******************************************
+*  Shared functions to include for inlining
+*********************************************/
+static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
+#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
+
+/*! ZSTD_wildcopy() :
+*   custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
+#define WILDCOPY_OVERLENGTH 8
+MEM_STATIC void ZSTD_wildcopy(void* dst, const void* src, size_t length)
+{
+    const BYTE* ip = (const BYTE*)src;
+    BYTE* op = (BYTE*)dst;
+    BYTE* const oend = op + length;
+    do
+        COPY8(op, ip)
+    while (op < oend);
+}
+
+MEM_STATIC void ZSTD_wildcopy_e(void* dst, const void* src, void* dstEnd)   /* should be faster for decoding, but strangely, not verified on all platform */
+{
+    const BYTE* ip = (const BYTE*)src;
+    BYTE* op = (BYTE*)dst;
+    BYTE* const oend = (BYTE*)dstEnd;
+    do
+        COPY8(op, ip)
+    while (op < oend);
+}
+
+
+/*-*******************************************
+*  Private interfaces
+*********************************************/
+typedef struct ZSTD_stats_s ZSTD_stats_t;
+
+typedef struct {
+    U32 off;
+    U32 len;
+} ZSTD_match_t;
+
+typedef struct {
+    U32 price;
+    U32 off;
+    U32 mlen;
+    U32 litlen;
+    U32 rep[ZSTD_REP_NUM];
+} ZSTD_optimal_t;
+
+
+typedef struct seqDef_s {
+    U32 offset;
+    U16 litLength;
+    U16 matchLength;
+} seqDef;
+
+
+typedef struct {
+    seqDef* sequencesStart;
+    seqDef* sequences;
+    BYTE* litStart;
+    BYTE* lit;
+    BYTE* llCode;
+    BYTE* mlCode;
+    BYTE* ofCode;
+    U32   longLengthID;   /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
+    U32   longLengthPos;
+    /* opt */
+    ZSTD_optimal_t* priceTable;
+    ZSTD_match_t* matchTable;
+    U32* matchLengthFreq;
+    U32* litLengthFreq;
+    U32* litFreq;
+    U32* offCodeFreq;
+    U32  matchLengthSum;
+    U32  matchSum;
+    U32  litLengthSum;
+    U32  litSum;
+    U32  offCodeSum;
+    U32  log2matchLengthSum;
+    U32  log2matchSum;
+    U32  log2litLengthSum;
+    U32  log2litSum;
+    U32  log2offCodeSum;
+    U32  factor;
+    U32  cachedPrice;
+    U32  cachedLitLength;
+    const BYTE* cachedLiterals;
+} seqStore_t;
+
+const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx);
+void ZSTD_seqToCodes(const seqStore_t* seqStorePtr);
+int ZSTD_isSkipFrame(ZSTD_DCtx* dctx);
+
+/* custom memory allocation functions */
+void* ZSTD_defaultAllocFunction(void* opaque, size_t size);
+void ZSTD_defaultFreeFunction(void* opaque, void* address);
+static const ZSTD_customMem defaultCustomMem = { ZSTD_defaultAllocFunction, ZSTD_defaultFreeFunction, NULL };
+void* ZSTD_malloc(size_t size, ZSTD_customMem customMem);
+void ZSTD_free(void* ptr, ZSTD_customMem customMem);
+
+
+/*======  common function  ======*/
+
+MEM_STATIC U32 ZSTD_highbit32(U32 val)
+{
+#   if defined(_MSC_VER)   /* Visual */
+    unsigned long r=0;
+    _BitScanReverse(&r, val);
+    return (unsigned)r;
+#   elif defined(__GNUC__) && (__GNUC__ >= 3)   /* GCC Intrinsic */
+    return 31 - __builtin_clz(val);
+#   else   /* Software version */
+    static const int DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+    U32 v = val;
+    int r;
+    v |= v >> 1;
+    v |= v >> 2;
+    v |= v >> 4;
+    v |= v >> 8;
+    v |= v >> 16;
+    r = DeBruijnClz[(U32)(v * 0x07C4ACDDU) >> 27];
+    return r;
+#   endif
+}
+
+
+#endif   /* ZSTD_CCOMMON_H_MODULE */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/compress/fse_compress.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,810 @@
+/* ******************************************************************
+   FSE : Finite State Entropy encoder
+   Copyright (C) 2013-2015, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+    You can contact the author at :
+    - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
+    - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* **************************************************************
+*  Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER    /* Visual Studio */
+#  define FORCE_INLINE static __forceinline
+#  include <intrin.h>                    /* For Visual 2005 */
+#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
+#  pragma warning(disable : 4214)        /* disable: C4214: non-int bitfields */
+#else
+#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
+#    ifdef __GNUC__
+#      define FORCE_INLINE static inline __attribute__((always_inline))
+#    else
+#      define FORCE_INLINE static inline
+#    endif
+#  else
+#    define FORCE_INLINE static
+#  endif /* __STDC_VERSION__ */
+#endif
+
+
+/* **************************************************************
+*  Includes
+****************************************************************/
+#include <stdlib.h>     /* malloc, free, qsort */
+#include <string.h>     /* memcpy, memset */
+#include <stdio.h>      /* printf (debug) */
+#include "bitstream.h"
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+
+
+/* **************************************************************
+*  Error Management
+****************************************************************/
+#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
+
+
+/* **************************************************************
+*  Complex types
+****************************************************************/
+typedef U32 CTable_max_t[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
+
+
+/* **************************************************************
+*  Templates
+****************************************************************/
+/*
+  designed to be included
+  for type-specific functions (template emulation in C)
+  Objective is to write these functions only once, for improved maintenance
+*/
+
+/* safety checks */
+#ifndef FSE_FUNCTION_EXTENSION
+#  error "FSE_FUNCTION_EXTENSION must be defined"
+#endif
+#ifndef FSE_FUNCTION_TYPE
+#  error "FSE_FUNCTION_TYPE must be defined"
+#endif
+
+/* Function names */
+#define FSE_CAT(X,Y) X##Y
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
+
+
+/* Function templates */
+size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+    U32 const tableSize = 1 << tableLog;
+    U32 const tableMask = tableSize - 1;
+    void* const ptr = ct;
+    U16* const tableU16 = ( (U16*) ptr) + 2;
+    void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
+    FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
+    U32 const step = FSE_TABLESTEP(tableSize);
+    U32 cumul[FSE_MAX_SYMBOL_VALUE+2];
+
+    FSE_FUNCTION_TYPE tableSymbol[FSE_MAX_TABLESIZE]; /* memset() is not necessary, even if static analyzer complain about it */
+    U32 highThreshold = tableSize-1;
+
+    /* CTable header */
+    tableU16[-2] = (U16) tableLog;
+    tableU16[-1] = (U16) maxSymbolValue;
+
+    /* For explanations on how to distribute symbol values over the table :
+    *  http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
+
+    /* symbol start positions */
+    {   U32 u;
+        cumul[0] = 0;
+        for (u=1; u<=maxSymbolValue+1; u++) {
+            if (normalizedCounter[u-1]==-1) {  /* Low proba symbol */
+                cumul[u] = cumul[u-1] + 1;
+                tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
+            } else {
+                cumul[u] = cumul[u-1] + normalizedCounter[u-1];
+        }   }
+        cumul[maxSymbolValue+1] = tableSize+1;
+    }
+
+    /* Spread symbols */
+    {   U32 position = 0;
+        U32 symbol;
+        for (symbol=0; symbol<=maxSymbolValue; symbol++) {
+            int nbOccurences;
+            for (nbOccurences=0; nbOccurences<normalizedCounter[symbol]; nbOccurences++) {
+                tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
+                position = (position + step) & tableMask;
+                while (position > highThreshold) position = (position + step) & tableMask;   /* Low proba area */
+        }   }
+
+        if (position!=0) return ERROR(GENERIC);   /* Must have gone through all positions */
+    }
+
+    /* Build table */
+    {   U32 u; for (u=0; u<tableSize; u++) {
+        FSE_FUNCTION_TYPE s = tableSymbol[u];   /* note : static analyzer may not understand tableSymbol is properly initialized */
+        tableU16[cumul[s]++] = (U16) (tableSize+u);   /* TableU16 : sorted by symbol order; gives next state value */
+    }   }
+
+    /* Build Symbol Transformation Table */
+    {   unsigned total = 0;
+        unsigned s;
+        for (s=0; s<=maxSymbolValue; s++) {
+            switch (normalizedCounter[s])
+            {
+            case  0: break;
+
+            case -1:
+            case  1:
+                symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
+                symbolTT[s].deltaFindState = total - 1;
+                total ++;
+                break;
+            default :
+                {
+                    U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1);
+                    U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
+                    symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
+                    symbolTT[s].deltaFindState = total - normalizedCounter[s];
+                    total +=  normalizedCounter[s];
+    }   }   }   }
+
+    return 0;
+}
+
+
+
+#ifndef FSE_COMMONDEFS_ONLY
+
+/*-**************************************************************
+*  FSE NCount encoding-decoding
+****************************************************************/
+size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
+{
+    size_t maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3;
+    return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND;  /* maxSymbolValue==0 ? use default */
+}
+
+static short FSE_abs(short a) { return (short)(a<0 ? -a : a); }
+
+static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
+                                       const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
+                                       unsigned writeIsSafe)
+{
+    BYTE* const ostart = (BYTE*) header;
+    BYTE* out = ostart;
+    BYTE* const oend = ostart + headerBufferSize;
+    int nbBits;
+    const int tableSize = 1 << tableLog;
+    int remaining;
+    int threshold;
+    U32 bitStream;
+    int bitCount;
+    unsigned charnum = 0;
+    int previous0 = 0;
+
+    bitStream = 0;
+    bitCount  = 0;
+    /* Table Size */
+    bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
+    bitCount  += 4;
+
+    /* Init */
+    remaining = tableSize+1;   /* +1 for extra accuracy */
+    threshold = tableSize;
+    nbBits = tableLog+1;
+
+    while (remaining>1) {  /* stops at 1 */
+        if (previous0) {
+            unsigned start = charnum;
+            while (!normalizedCounter[charnum]) charnum++;
+            while (charnum >= start+24) {
+                start+=24;
+                bitStream += 0xFFFFU << bitCount;
+                if ((!writeIsSafe) && (out > oend-2)) return ERROR(dstSize_tooSmall);   /* Buffer overflow */
+                out[0] = (BYTE) bitStream;
+                out[1] = (BYTE)(bitStream>>8);
+                out+=2;
+                bitStream>>=16;
+            }
+            while (charnum >= start+3) {
+                start+=3;
+                bitStream += 3 << bitCount;
+                bitCount += 2;
+            }
+            bitStream += (charnum-start) << bitCount;
+            bitCount += 2;
+            if (bitCount>16) {
+                if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall);   /* Buffer overflow */
+                out[0] = (BYTE)bitStream;
+                out[1] = (BYTE)(bitStream>>8);
+                out += 2;
+                bitStream >>= 16;
+                bitCount -= 16;
+        }   }
+        {   short count = normalizedCounter[charnum++];
+            const short max = (short)((2*threshold-1)-remaining);
+            remaining -= FSE_abs(count);
+            if (remaining<1) return ERROR(GENERIC);
+            count++;   /* +1 for extra accuracy */
+            if (count>=threshold) count += max;   /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
+            bitStream += count << bitCount;
+            bitCount  += nbBits;
+            bitCount  -= (count<max);
+            previous0  = (count==1);
+            while (remaining<threshold) nbBits--, threshold>>=1;
+        }
+        if (bitCount>16) {
+            if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall);   /* Buffer overflow */
+            out[0] = (BYTE)bitStream;
+            out[1] = (BYTE)(bitStream>>8);
+            out += 2;
+            bitStream >>= 16;
+            bitCount -= 16;
+    }   }
+
+    /* flush remaining bitStream */
+    if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall);   /* Buffer overflow */
+    out[0] = (BYTE)bitStream;
+    out[1] = (BYTE)(bitStream>>8);
+    out+= (bitCount+7) /8;
+
+    if (charnum > maxSymbolValue + 1) return ERROR(GENERIC);
+
+    return (out-ostart);
+}
+
+
+size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
+{
+    if (tableLog > FSE_MAX_TABLELOG) return ERROR(GENERIC);   /* Unsupported */
+    if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC);   /* Unsupported */
+
+    if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
+        return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
+
+    return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
+}
+
+
+
+/*-**************************************************************
+*  Counting histogram
+****************************************************************/
+/*! FSE_count_simple
+    This function just counts byte values within `src`,
+    and store the histogram into table `count`.
+    This function is unsafe : it doesn't check that all values within `src` can fit into `count`.
+    For this reason, prefer using a table `count` with 256 elements.
+    @return : count of most numerous element
+*/
+static size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
+                               const void* src, size_t srcSize)
+{
+    const BYTE* ip = (const BYTE*)src;
+    const BYTE* const end = ip + srcSize;
+    unsigned maxSymbolValue = *maxSymbolValuePtr;
+    unsigned max=0;
+
+
+    memset(count, 0, (maxSymbolValue+1)*sizeof(*count));
+    if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
+
+    while (ip<end) count[*ip++]++;
+
+    while (!count[maxSymbolValue]) maxSymbolValue--;
+    *maxSymbolValuePtr = maxSymbolValue;
+
+    { U32 s; for (s=0; s<=maxSymbolValue; s++) if (count[s] > max) max = count[s]; }
+
+    return (size_t)max;
+}
+
+
+static size_t FSE_count_parallel(unsigned* count, unsigned* maxSymbolValuePtr,
+                                const void* source, size_t sourceSize,
+                                unsigned checkMax)
+{
+    const BYTE* ip = (const BYTE*)source;
+    const BYTE* const iend = ip+sourceSize;
+    unsigned maxSymbolValue = *maxSymbolValuePtr;
+    unsigned max=0;
+
+
+    U32 Counting1[256] = { 0 };
+    U32 Counting2[256] = { 0 };
+    U32 Counting3[256] = { 0 };
+    U32 Counting4[256] = { 0 };
+
+    /* safety checks */
+    if (!sourceSize) {
+        memset(count, 0, maxSymbolValue + 1);
+        *maxSymbolValuePtr = 0;
+        return 0;
+    }
+    if (!maxSymbolValue) maxSymbolValue = 255;            /* 0 == default */
+
+    /* by stripes of 16 bytes */
+    {   U32 cached = MEM_read32(ip); ip += 4;
+        while (ip < iend-15) {
+            U32 c = cached; cached = MEM_read32(ip); ip += 4;
+            Counting1[(BYTE) c     ]++;
+            Counting2[(BYTE)(c>>8) ]++;
+            Counting3[(BYTE)(c>>16)]++;
+            Counting4[       c>>24 ]++;
+            c = cached; cached = MEM_read32(ip); ip += 4;
+            Counting1[(BYTE) c     ]++;
+            Counting2[(BYTE)(c>>8) ]++;
+            Counting3[(BYTE)(c>>16)]++;
+            Counting4[       c>>24 ]++;
+            c = cached; cached = MEM_read32(ip); ip += 4;
+            Counting1[(BYTE) c     ]++;
+            Counting2[(BYTE)(c>>8) ]++;
+            Counting3[(BYTE)(c>>16)]++;
+            Counting4[       c>>24 ]++;
+            c = cached; cached = MEM_read32(ip); ip += 4;
+            Counting1[(BYTE) c     ]++;
+            Counting2[(BYTE)(c>>8) ]++;
+            Counting3[(BYTE)(c>>16)]++;
+            Counting4[       c>>24 ]++;
+        }
+        ip-=4;
+    }
+
+    /* finish last symbols */
+    while (ip<iend) Counting1[*ip++]++;
+
+    if (checkMax) {   /* verify stats will fit into destination table */
+        U32 s; for (s=255; s>maxSymbolValue; s--) {
+            Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
+            if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
+    }   }
+
+    { U32 s; for (s=0; s<=maxSymbolValue; s++) {
+        count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
+        if (count[s] > max) max = count[s];
+    }}
+
+    while (!count[maxSymbolValue]) maxSymbolValue--;
+    *maxSymbolValuePtr = maxSymbolValue;
+    return (size_t)max;
+}
+
+/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
+size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
+                     const void* source, size_t sourceSize)
+{
+    if (sourceSize < 1500) return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
+    return FSE_count_parallel(count, maxSymbolValuePtr, source, sourceSize, 0);
+}
+
+size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr,
+                 const void* source, size_t sourceSize)
+{
+    if (*maxSymbolValuePtr <255)
+        return FSE_count_parallel(count, maxSymbolValuePtr, source, sourceSize, 1);
+    *maxSymbolValuePtr = 255;
+    return FSE_countFast(count, maxSymbolValuePtr, source, sourceSize);
+}
+
+
+
+/*-**************************************************************
+*  FSE Compression Code
+****************************************************************/
+/*! FSE_sizeof_CTable() :
+    FSE_CTable is a variable size structure which contains :
+    `U16 tableLog;`
+    `U16 maxSymbolValue;`
+    `U16 nextStateNumber[1 << tableLog];`                         // This size is variable
+    `FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];`  // This size is variable
+Allocation is manual (C standard does not support variable-size structures).
+*/
+
+size_t FSE_sizeof_CTable (unsigned maxSymbolValue, unsigned tableLog)
+{
+    size_t size;
+    FSE_STATIC_ASSERT((size_t)FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)*4 >= sizeof(CTable_max_t));   /* A compilation error here means FSE_CTABLE_SIZE_U32 is not large enough */
+    if (tableLog > FSE_MAX_TABLELOG) return ERROR(GENERIC);
+    size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
+    return size;
+}
+
+FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
+{
+    size_t size;
+    if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
+    size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
+    return (FSE_CTable*)malloc(size);
+}
+
+void FSE_freeCTable (FSE_CTable* ct) { free(ct); }
+
+/* provides the minimum logSize to safely represent a distribution */
+static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
+{
+	U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1;
+	U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
+	U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
+	return minBits;
+}
+
+unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
+{
+	U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
+    U32 tableLog = maxTableLog;
+	U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
+    if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
+	if (maxBitsSrc < tableLog) tableLog = maxBitsSrc;   /* Accuracy can be reduced */
+	if (minBits > tableLog) tableLog = minBits;   /* Need a minimum to safely represent all symbol values */
+    if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
+    if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
+    return tableLog;
+}
+
+unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
+{
+    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
+}
+
+
+/* Secondary normalization method.
+   To be used when primary method fails. */
+
+static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue)
+{
+    U32 s;
+    U32 distributed = 0;
+    U32 ToDistribute;
+
+    /* Init */
+    U32 lowThreshold = (U32)(total >> tableLog);
+    U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
+
+    for (s=0; s<=maxSymbolValue; s++) {
+        if (count[s] == 0) {
+            norm[s]=0;
+            continue;
+        }
+        if (count[s] <= lowThreshold) {
+            norm[s] = -1;
+            distributed++;
+            total -= count[s];
+            continue;
+        }
+        if (count[s] <= lowOne) {
+            norm[s] = 1;
+            distributed++;
+            total -= count[s];
+            continue;
+        }
+        norm[s]=-2;
+    }
+    ToDistribute = (1 << tableLog) - distributed;
+
+    if ((total / ToDistribute) > lowOne) {
+        /* risk of rounding to zero */
+        lowOne = (U32)((total * 3) / (ToDistribute * 2));
+        for (s=0; s<=maxSymbolValue; s++) {
+            if ((norm[s] == -2) && (count[s] <= lowOne)) {
+                norm[s] = 1;
+                distributed++;
+                total -= count[s];
+                continue;
+        }   }
+        ToDistribute = (1 << tableLog) - distributed;
+    }
+
+    if (distributed == maxSymbolValue+1) {
+        /* all values are pretty poor;
+           probably incompressible data (should have already been detected);
+           find max, then give all remaining points to max */
+        U32 maxV = 0, maxC = 0;
+        for (s=0; s<=maxSymbolValue; s++)
+            if (count[s] > maxC) maxV=s, maxC=count[s];
+        norm[maxV] += (short)ToDistribute;
+        return 0;
+    }
+
+    {
+        U64 const vStepLog = 62 - tableLog;
+        U64 const mid = (1ULL << (vStepLog-1)) - 1;
+        U64 const rStep = ((((U64)1<<vStepLog) * ToDistribute) + mid) / total;   /* scale on remaining */
+        U64 tmpTotal = mid;
+        for (s=0; s<=maxSymbolValue; s++) {
+            if (norm[s]==-2) {
+                U64 end = tmpTotal + (count[s] * rStep);
+                U32 sStart = (U32)(tmpTotal >> vStepLog);
+                U32 sEnd = (U32)(end >> vStepLog);
+                U32 weight = sEnd - sStart;
+                if (weight < 1)
+                    return ERROR(GENERIC);
+                norm[s] = (short)weight;
+                tmpTotal = end;
+    }   }   }
+
+    return 0;
+}
+
+
+size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
+                           const unsigned* count, size_t total,
+                           unsigned maxSymbolValue)
+{
+    /* Sanity checks */
+    if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
+    if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC);   /* Unsupported size */
+    if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);   /* Unsupported size */
+    if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC);   /* Too small tableLog, compression potentially impossible */
+
+    {   U32 const rtbTable[] = {     0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
+
+        U64 const scale = 62 - tableLog;
+        U64 const step = ((U64)1<<62) / total;   /* <== here, one division ! */
+        U64 const vStep = 1ULL<<(scale-20);
+        int stillToDistribute = 1<<tableLog;
+        unsigned s;
+        unsigned largest=0;
+        short largestP=0;
+        U32 lowThreshold = (U32)(total >> tableLog);
+
+        for (s=0; s<=maxSymbolValue; s++) {
+            if (count[s] == total) return 0;   /* rle special case */
+            if (count[s] == 0) { normalizedCounter[s]=0; continue; }
+            if (count[s] <= lowThreshold) {
+                normalizedCounter[s] = -1;
+                stillToDistribute--;
+            } else {
+                short proba = (short)((count[s]*step) >> scale);
+                if (proba<8) {
+                    U64 restToBeat = vStep * rtbTable[proba];
+                    proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
+                }
+                if (proba > largestP) largestP=proba, largest=s;
+                normalizedCounter[s] = proba;
+                stillToDistribute -= proba;
+        }   }
+        if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
+            /* corner case, need another normalization method */
+            size_t errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
+            if (FSE_isError(errorCode)) return errorCode;
+        }
+        else normalizedCounter[largest] += (short)stillToDistribute;
+    }
+
+#if 0
+    {   /* Print Table (debug) */
+        U32 s;
+        U32 nTotal = 0;
+        for (s=0; s<=maxSymbolValue; s++)
+            printf("%3i: %4i \n", s, normalizedCounter[s]);
+        for (s=0; s<=maxSymbolValue; s++)
+            nTotal += abs(normalizedCounter[s]);
+        if (nTotal != (1U<<tableLog))
+            printf("Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
+        getchar();
+    }
+#endif
+
+    return tableLog;
+}
+
+
+/* fake FSE_CTable, for raw (uncompressed) input */
+size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
+{
+    const unsigned tableSize = 1 << nbBits;
+    const unsigned tableMask = tableSize - 1;
+    const unsigned maxSymbolValue = tableMask;
+    void* const ptr = ct;
+    U16* const tableU16 = ( (U16*) ptr) + 2;
+    void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1);   /* assumption : tableLog >= 1 */
+    FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
+    unsigned s;
+
+    /* Sanity checks */
+    if (nbBits < 1) return ERROR(GENERIC);             /* min size */
+
+    /* header */
+    tableU16[-2] = (U16) nbBits;
+    tableU16[-1] = (U16) maxSymbolValue;
+
+    /* Build table */
+    for (s=0; s<tableSize; s++)
+        tableU16[s] = (U16)(tableSize + s);
+
+    /* Build Symbol Transformation Table */
+    {   const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
+
+        for (s=0; s<=maxSymbolValue; s++) {
+            symbolTT[s].deltaNbBits = deltaNbBits;
+            symbolTT[s].deltaFindState = s-1;
+    }   }
+
+
+    return 0;
+}
+
+/* fake FSE_CTable, for rle (100% always same symbol) input */
+size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
+{
+    void* ptr = ct;
+    U16* tableU16 = ( (U16*) ptr) + 2;
+    void* FSCTptr = (U32*)ptr + 2;
+    FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
+
+    /* header */
+    tableU16[-2] = (U16) 0;
+    tableU16[-1] = (U16) symbolValue;
+
+    /* Build table */
+    tableU16[0] = 0;
+    tableU16[1] = 0;   /* just in case */
+
+    /* Build Symbol Transformation Table */
+    symbolTT[symbolValue].deltaNbBits = 0;
+    symbolTT[symbolValue].deltaFindState = 0;
+
+    return 0;
+}
+
+
+static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
+                           const void* src, size_t srcSize,
+                           const FSE_CTable* ct, const unsigned fast)
+{
+    const BYTE* const istart = (const BYTE*) src;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* ip=iend;
+
+
+    BIT_CStream_t bitC;
+    FSE_CState_t CState1, CState2;
+
+    /* init */
+    if (srcSize <= 2) return 0;
+    { size_t const errorCode = BIT_initCStream(&bitC, dst, dstSize);
+      if (FSE_isError(errorCode)) return 0; }
+
+#define FSE_FLUSHBITS(s)  (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
+
+    if (srcSize & 1) {
+        FSE_initCState2(&CState1, ct, *--ip);
+        FSE_initCState2(&CState2, ct, *--ip);
+        FSE_encodeSymbol(&bitC, &CState1, *--ip);
+        FSE_FLUSHBITS(&bitC);
+    } else {
+        FSE_initCState2(&CState2, ct, *--ip);
+        FSE_initCState2(&CState1, ct, *--ip);
+    }
+
+    /* join to mod 4 */
+    srcSize -= 2;
+    if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) {  /* test bit 2 */
+        FSE_encodeSymbol(&bitC, &CState2, *--ip);
+        FSE_encodeSymbol(&bitC, &CState1, *--ip);
+        FSE_FLUSHBITS(&bitC);
+    }
+
+    /* 2 or 4 encoding per loop */
+    for ( ; ip>istart ; ) {
+
+        FSE_encodeSymbol(&bitC, &CState2, *--ip);
+
+        if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 )   /* this test must be static */
+            FSE_FLUSHBITS(&bitC);
+
+        FSE_encodeSymbol(&bitC, &CState1, *--ip);
+
+        if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) {  /* this test must be static */
+            FSE_encodeSymbol(&bitC, &CState2, *--ip);
+            FSE_encodeSymbol(&bitC, &CState1, *--ip);
+        }
+
+        FSE_FLUSHBITS(&bitC);
+    }
+
+    FSE_flushCState(&bitC, &CState2);
+    FSE_flushCState(&bitC, &CState1);
+    return BIT_closeCStream(&bitC);
+}
+
+size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
+                           const void* src, size_t srcSize,
+                           const FSE_CTable* ct)
+{
+    const unsigned fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
+
+    if (fast)
+        return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
+    else
+        return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
+}
+
+
+size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
+
+size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
+{
+    const BYTE* const istart = (const BYTE*) src;
+    const BYTE* ip = istart;
+
+    BYTE* const ostart = (BYTE*) dst;
+    BYTE* op = ostart;
+    BYTE* const oend = ostart + dstSize;
+
+    U32   count[FSE_MAX_SYMBOL_VALUE+1];
+    S16   norm[FSE_MAX_SYMBOL_VALUE+1];
+    CTable_max_t ct;
+    size_t errorCode;
+
+    /* init conditions */
+    if (srcSize <= 1) return 0;  /* Uncompressible */
+    if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
+    if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
+
+    /* Scan input and build symbol stats */
+    errorCode = FSE_count (count, &maxSymbolValue, ip, srcSize);
+    if (FSE_isError(errorCode)) return errorCode;
+    if (errorCode == srcSize) return 1;
+    if (errorCode == 1) return 0;   /* each symbol only present once */
+    if (errorCode < (srcSize >> 7)) return 0;   /* Heuristic : not compressible enough */
+
+    tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
+    errorCode = FSE_normalizeCount (norm, tableLog, count, srcSize, maxSymbolValue);
+    if (FSE_isError(errorCode)) return errorCode;
+
+    /* Write table description header */
+    errorCode = FSE_writeNCount (op, oend-op, norm, maxSymbolValue, tableLog);
+    if (FSE_isError(errorCode)) return errorCode;
+    op += errorCode;
+
+    /* Compress */
+    errorCode = FSE_buildCTable (ct, norm, maxSymbolValue, tableLog);
+    if (FSE_isError(errorCode)) return errorCode;
+    errorCode = FSE_compress_usingCTable(op, oend - op, ip, srcSize, ct);
+    if (errorCode == 0) return 0;   /* not enough space for compressed data */
+    op += errorCode;
+
+    /* check compressibility */
+    if ( (size_t)(op-ostart) >= srcSize-1 )
+        return 0;
+
+    return op-ostart;
+}
+
+size_t FSE_compress (void* dst, size_t dstSize, const void* src, size_t srcSize)
+{
+    return FSE_compress2(dst, dstSize, src, (U32)srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG);
+}
+
+
+#endif   /* FSE_COMMONDEFS_ONLY */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/compress/huf_compress.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,533 @@
+/* ******************************************************************
+   Huffman encoder, part of New Generation Entropy library
+   Copyright (C) 2013-2016, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+    You can contact the author at :
+    - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+    - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* **************************************************************
+*  Compiler specifics
+****************************************************************/
+#ifdef _MSC_VER    /* Visual Studio */
+#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
+#endif
+
+
+/* **************************************************************
+*  Includes
+****************************************************************/
+#include <string.h>     /* memcpy, memset */
+#include <stdio.h>      /* printf (debug) */
+#include "bitstream.h"
+#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
+#include "fse.h"        /* header compression */
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+
+
+/* **************************************************************
+*  Error Management
+****************************************************************/
+#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
+
+
+/* **************************************************************
+*  Utils
+****************************************************************/
+unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
+{
+    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
+}
+
+
+/* *******************************************************
+*  HUF : Huffman block compression
+*********************************************************/
+struct HUF_CElt_s {
+  U16  val;
+  BYTE nbBits;
+};   /* typedef'd to HUF_CElt within "huf.h" */
+
+typedef struct nodeElt_s {
+    U32 count;
+    U16 parent;
+    BYTE byte;
+    BYTE nbBits;
+} nodeElt;
+
+/*! HUF_writeCTable() :
+    `CTable` : huffman tree to save, using huf representation.
+    @return : size of saved CTable */
+size_t HUF_writeCTable (void* dst, size_t maxDstSize,
+                        const HUF_CElt* CTable, U32 maxSymbolValue, U32 huffLog)
+{
+    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];
+    BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
+    BYTE* op = (BYTE*)dst;
+    U32 n;
+
+     /* check conditions */
+    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(GENERIC);
+
+    /* convert to weight */
+    bitsToWeight[0] = 0;
+    for (n=1; n<huffLog+1; n++)
+        bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
+    for (n=0; n<maxSymbolValue; n++)
+        huffWeight[n] = bitsToWeight[CTable[n].nbBits];
+
+    {   size_t const size = FSE_compress(op+1, maxDstSize-1, huffWeight, maxSymbolValue);
+        if (FSE_isError(size)) return size;
+        if ((size>1) & (size < maxSymbolValue/2)) {   /* FSE compressed */
+            op[0] = (BYTE)size;
+            return size+1;
+        }
+    }
+
+    /* raw values */
+    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen */
+    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
+    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
+    huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause issue in final combination */
+    for (n=0; n<maxSymbolValue; n+=2)
+        op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
+    return ((maxSymbolValue+1)/2) + 1;
+
+}
+
+
+size_t HUF_readCTable (HUF_CElt* CTable, U32 maxSymbolValue, const void* src, size_t srcSize)
+{
+    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
+    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
+    U32 tableLog = 0;
+    size_t readSize;
+    U32 nbSymbols = 0;
+    /*memset(huffWeight, 0, sizeof(huffWeight));*/   /* is not necessary, even though some analyzer complain ... */
+
+    /* get symbol weights */
+    readSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+    if (HUF_isError(readSize)) return readSize;
+
+    /* check result */
+    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
+    if (nbSymbols > maxSymbolValue+1) return ERROR(maxSymbolValue_tooSmall);
+
+    /* Prepare base value per rank */
+    {   U32 n, nextRankStart = 0;
+        for (n=1; n<=tableLog; n++) {
+            U32 current = nextRankStart;
+            nextRankStart += (rankVal[n] << (n-1));
+            rankVal[n] = current;
+    }   }
+
+    /* fill nbBits */
+    {   U32 n; for (n=0; n<nbSymbols; n++) {
+            const U32 w = huffWeight[n];
+            CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
+    }   }
+
+    /* fill val */
+    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
+        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
+        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
+        /* determine stating value per rank */
+        valPerRank[tableLog+1] = 0;   /* for w==0 */
+        {   U16 min = 0;
+            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
+                valPerRank[n] = min;     /* get starting value within each rank */
+                min += nbPerRank[n];
+                min >>= 1;
+        }   }
+        /* assign value within rank, symbol order */
+        { U32 n; for (n=0; n<=maxSymbolValue; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
+    }
+
+    return readSize;
+}
+
+
+static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
+{
+    const U32 largestBits = huffNode[lastNonNull].nbBits;
+    if (largestBits <= maxNbBits) return largestBits;   /* early exit : no elt > maxNbBits */
+
+    /* there are several too large elements (at least >= 2) */
+    {   int totalCost = 0;
+        const U32 baseCost = 1 << (largestBits - maxNbBits);
+        U32 n = lastNonNull;
+
+        while (huffNode[n].nbBits > maxNbBits) {
+            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
+            huffNode[n].nbBits = (BYTE)maxNbBits;
+            n --;
+        }  /* n stops at huffNode[n].nbBits <= maxNbBits */
+        while (huffNode[n].nbBits == maxNbBits) n--;   /* n end at index of smallest symbol using < maxNbBits */
+
+        /* renorm totalCost */
+        totalCost >>= (largestBits - maxNbBits);  /* note : totalCost is necessarily a multiple of baseCost */
+
+        /* repay normalized cost */
+        {   U32 const noSymbol = 0xF0F0F0F0;
+            U32 rankLast[HUF_TABLELOG_MAX+2];
+            int pos;
+
+            /* Get pos of last (smallest) symbol per rank */
+            memset(rankLast, 0xF0, sizeof(rankLast));
+            {   U32 currentNbBits = maxNbBits;
+                for (pos=n ; pos >= 0; pos--) {
+                    if (huffNode[pos].nbBits >= currentNbBits) continue;
+                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
+                    rankLast[maxNbBits-currentNbBits] = pos;
+            }   }
+
+            while (totalCost > 0) {
+                U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
+                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
+                    U32 highPos = rankLast[nBitsToDecrease];
+                    U32 lowPos = rankLast[nBitsToDecrease-1];
+                    if (highPos == noSymbol) continue;
+                    if (lowPos == noSymbol) break;
+                    {   U32 const highTotal = huffNode[highPos].count;
+                        U32 const lowTotal = 2 * huffNode[lowPos].count;
+                        if (highTotal <= lowTotal) break;
+                }   }
+                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
+                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))  /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
+                    nBitsToDecrease ++;
+                totalCost -= 1 << (nBitsToDecrease-1);
+                if (rankLast[nBitsToDecrease-1] == noSymbol)
+                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];   /* this rank is no longer empty */
+                huffNode[rankLast[nBitsToDecrease]].nbBits ++;
+                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
+                    rankLast[nBitsToDecrease] = noSymbol;
+                else {
+                    rankLast[nBitsToDecrease]--;
+                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
+                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
+            }   }   /* while (totalCost > 0) */
+
+            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
+                if (rankLast[1] == noSymbol) {  /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
+                    while (huffNode[n].nbBits == maxNbBits) n--;
+                    huffNode[n+1].nbBits--;
+                    rankLast[1] = n+1;
+                    totalCost++;
+                    continue;
+                }
+                huffNode[ rankLast[1] + 1 ].nbBits--;
+                rankLast[1]++;
+                totalCost ++;
+    }   }   }   /* there are several too large elements (at least >= 2) */
+
+    return maxNbBits;
+}
+
+
+typedef struct {
+    U32 base;
+    U32 current;
+} rankPos;
+
+static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
+{
+    rankPos rank[32];
+    U32 n;
+
+    memset(rank, 0, sizeof(rank));
+    for (n=0; n<=maxSymbolValue; n++) {
+        U32 r = BIT_highbit32(count[n] + 1);
+        rank[r].base ++;
+    }
+    for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
+    for (n=0; n<32; n++) rank[n].current = rank[n].base;
+    for (n=0; n<=maxSymbolValue; n++) {
+        U32 const c = count[n];
+        U32 const r = BIT_highbit32(c+1) + 1;
+        U32 pos = rank[r].current++;
+        while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
+        huffNode[pos].count = c;
+        huffNode[pos].byte  = (BYTE)n;
+    }
+}
+
+
+#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
+size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
+{
+    nodeElt huffNode0[2*HUF_SYMBOLVALUE_MAX+1 +1];
+    nodeElt* huffNode = huffNode0 + 1;
+    U32 n, nonNullRank;
+    int lowS, lowN;
+    U16 nodeNb = STARTNODE;
+    U32 nodeRoot;
+
+    /* safety checks */
+    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
+    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(GENERIC);
+    memset(huffNode0, 0, sizeof(huffNode0));
+
+    /* sort, decreasing order */
+    HUF_sort(huffNode, count, maxSymbolValue);
+
+    /* init for parents */
+    nonNullRank = maxSymbolValue;
+    while(huffNode[nonNullRank].count == 0) nonNullRank--;
+    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
+    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
+    huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
+    nodeNb++; lowS-=2;
+    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
+    huffNode0[0].count = (U32)(1U<<31);
+
+    /* create parents */
+    while (nodeNb <= nodeRoot) {
+        U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
+        U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
+        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
+        huffNode[n1].parent = huffNode[n2].parent = nodeNb;
+        nodeNb++;
+    }
+
+    /* distribute weights (unlimited tree height) */
+    huffNode[nodeRoot].nbBits = 0;
+    for (n=nodeRoot-1; n>=STARTNODE; n--)
+        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
+    for (n=0; n<=nonNullRank; n++)
+        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
+
+    /* enforce maxTableLog */
+    maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
+
+    /* fill result into tree (val, nbBits) */
+    {   U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
+        U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
+        if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
+        for (n=0; n<=nonNullRank; n++)
+            nbPerRank[huffNode[n].nbBits]++;
+        /* determine stating value per rank */
+        {   U16 min = 0;
+            for (n=maxNbBits; n>0; n--) {
+                valPerRank[n] = min;      /* get starting value within each rank */
+                min += nbPerRank[n];
+                min >>= 1;
+        }   }
+        for (n=0; n<=maxSymbolValue; n++)
+            tree[huffNode[n].byte].nbBits = huffNode[n].nbBits;   /* push nbBits per symbol, symbol order */
+        for (n=0; n<=maxSymbolValue; n++)
+            tree[n].val = valPerRank[tree[n].nbBits]++;   /* assign value within rank, symbol order */
+    }
+
+    return maxNbBits;
+}
+
+static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
+{
+    BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
+}
+
+size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
+
+#define HUF_FLUSHBITS(s)  (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
+
+#define HUF_FLUSHBITS_1(stream) \
+    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
+
+#define HUF_FLUSHBITS_2(stream) \
+    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
+
+size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
+{
+    const BYTE* ip = (const BYTE*) src;
+    BYTE* const ostart = (BYTE*)dst;
+    BYTE* const oend = ostart + dstSize;
+    BYTE* op = ostart;
+    size_t n;
+    const unsigned fast = (dstSize >= HUF_BLOCKBOUND(srcSize));
+    BIT_CStream_t bitC;
+
+    /* init */
+    if (dstSize < 8) return 0;   /* not enough space to compress */
+    { size_t const errorCode = BIT_initCStream(&bitC, op, oend-op);
+      if (HUF_isError(errorCode)) return 0; }
+
+    n = srcSize & ~3;  /* join to mod 4 */
+    switch (srcSize & 3)
+    {
+        case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
+                 HUF_FLUSHBITS_2(&bitC);
+        case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
+                 HUF_FLUSHBITS_1(&bitC);
+        case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
+                 HUF_FLUSHBITS(&bitC);
+        case 0 :
+        default: ;
+    }
+
+    for (; n>0; n-=4) {  /* note : n&3==0 at this stage */
+        HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
+        HUF_FLUSHBITS_1(&bitC);
+        HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
+        HUF_FLUSHBITS_2(&bitC);
+        HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
+        HUF_FLUSHBITS_1(&bitC);
+        HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
+        HUF_FLUSHBITS(&bitC);
+    }
+
+    return BIT_closeCStream(&bitC);
+}
+
+
+size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
+{
+    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
+    const BYTE* ip = (const BYTE*) src;
+    const BYTE* const iend = ip + srcSize;
+    BYTE* const ostart = (BYTE*) dst;
+    BYTE* const oend = ostart + dstSize;
+    BYTE* op = ostart;
+
+    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
+    if (srcSize < 12) return 0;   /* no saving possible : too small input */
+    op += 6;   /* jumpTable */
+
+    {   size_t const cSize = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
+        if (HUF_isError(cSize)) return cSize;
+        if (cSize==0) return 0;
+        MEM_writeLE16(ostart, (U16)cSize);
+        op += cSize;
+    }
+
+    ip += segmentSize;
+    {   size_t const cSize = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
+        if (HUF_isError(cSize)) return cSize;
+        if (cSize==0) return 0;
+        MEM_writeLE16(ostart+2, (U16)cSize);
+        op += cSize;
+    }
+
+    ip += segmentSize;
+    {   size_t const cSize = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
+        if (HUF_isError(cSize)) return cSize;
+        if (cSize==0) return 0;
+        MEM_writeLE16(ostart+4, (U16)cSize);
+        op += cSize;
+    }
+
+    ip += segmentSize;
+    {   size_t const cSize = HUF_compress1X_usingCTable(op, oend-op, ip, iend-ip, CTable);
+        if (HUF_isError(cSize)) return cSize;
+        if (cSize==0) return 0;
+        op += cSize;
+    }
+
+    return op-ostart;
+}
+
+
+static size_t HUF_compress_internal (
+                void* dst, size_t dstSize,
+                const void* src, size_t srcSize,
+                unsigned maxSymbolValue, unsigned huffLog,
+                unsigned singleStream)
+{
+    BYTE* const ostart = (BYTE*)dst;
+    BYTE* const oend = ostart + dstSize;
+    BYTE* op = ostart;
+
+    U32 count[HUF_SYMBOLVALUE_MAX+1];
+    HUF_CElt CTable[HUF_SYMBOLVALUE_MAX+1];
+
+    /* checks & inits */
+    if (!srcSize) return 0;  /* Uncompressed (note : 1 means rle, so first byte must be correct) */
+    if (!dstSize) return 0;  /* cannot fit within dst budget */
+    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
+    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
+    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
+    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
+
+    /* Scan input and build symbol stats */
+    {   size_t const largest = FSE_count (count, &maxSymbolValue, (const BYTE*)src, srcSize);
+        if (HUF_isError(largest)) return largest;
+        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
+        if (largest <= (srcSize >> 7)+1) return 0;   /* Fast heuristic : not compressible enough */
+    }
+
+    /* Build Huffman Tree */
+    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
+    {   size_t const maxBits = HUF_buildCTable (CTable, count, maxSymbolValue, huffLog);
+        if (HUF_isError(maxBits)) return maxBits;
+        huffLog = (U32)maxBits;
+    }
+
+    /* Write table description header */
+    {   size_t const hSize = HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog);
+        if (HUF_isError(hSize)) return hSize;
+        if (hSize + 12 >= srcSize) return 0;   /* not useful to try compression */
+        op += hSize;
+    }
+
+    /* Compress */
+    {   size_t const cSize = (singleStream) ?
+                            HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) :   /* single segment */
+                            HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
+        if (HUF_isError(cSize)) return cSize;
+        if (cSize==0) return 0;   /* uncompressible */
+        op += cSize;
+    }
+
+    /* check compressibility */
+    if ((size_t)(op-ostart) >= srcSize-1)
+        return 0;
+
+    return op-ostart;
+}
+
+
+size_t HUF_compress1X (void* dst, size_t dstSize,
+                 const void* src, size_t srcSize,
+                 unsigned maxSymbolValue, unsigned huffLog)
+{
+    return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1);
+}
+
+size_t HUF_compress2 (void* dst, size_t dstSize,
+                const void* src, size_t srcSize,
+                unsigned maxSymbolValue, unsigned huffLog)
+{
+    return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0);
+}
+
+
+size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
+{
+    return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_TABLELOG_DEFAULT);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/compress/zbuff_compress.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,319 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+
+
+/* *************************************
+*  Dependencies
+***************************************/
+#include <stdlib.h>
+#include "error_private.h"
+#include "zstd_internal.h"  /* MIN, ZSTD_BLOCKHEADERSIZE, defaultCustomMem */
+#define ZBUFF_STATIC_LINKING_ONLY
+#include "zbuff.h"
+
+
+/* *************************************
+*  Constants
+***************************************/
+static size_t const ZBUFF_endFrameSize = ZSTD_BLOCKHEADERSIZE;
+
+
+/*-***********************************************************
+*  Streaming compression
+*
+*  A ZBUFF_CCtx object is required to track streaming operation.
+*  Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
+*  Use ZBUFF_compressInit() to start a new compression operation.
+*  ZBUFF_CCtx objects can be reused multiple times.
+*
+*  Use ZBUFF_compressContinue() repetitively to consume your input.
+*  *srcSizePtr and *dstCapacityPtr can be any size.
+*  The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
+*  Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
+*  The content of dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change dst .
+*  @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
+*            or an error code, which can be tested using ZBUFF_isError().
+*
+*  ZBUFF_compressFlush() can be used to instruct ZBUFF to compress and output whatever remains within its buffer.
+*  Note that it will not output more than *dstCapacityPtr.
+*  Therefore, some content might still be left into its internal buffer if dst buffer is too small.
+*  @return : nb of bytes still present into internal buffer (0 if it's empty)
+*            or an error code, which can be tested using ZBUFF_isError().
+*
+*  ZBUFF_compressEnd() instructs to finish a frame.
+*  It will perform a flush and write frame epilogue.
+*  Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
+*  @return : nb of bytes still present into internal buffer (0 if it's empty)
+*            or an error code, which can be tested using ZBUFF_isError().
+*
+*  Hint : recommended buffer sizes (not compulsory)
+*  input : ZSTD_BLOCKSIZE_MAX (128 KB), internal unit size, it improves latency to use this value.
+*  output : ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize : ensures it's always possible to write/flush/end a full block at best speed.
+* ***********************************************************/
+
+typedef enum { ZBUFFcs_init, ZBUFFcs_load, ZBUFFcs_flush, ZBUFFcs_final } ZBUFF_cStage;
+
+/* *** Resources *** */
+struct ZBUFF_CCtx_s {
+    ZSTD_CCtx* zc;
+    char*  inBuff;
+    size_t inBuffSize;
+    size_t inToCompress;
+    size_t inBuffPos;
+    size_t inBuffTarget;
+    size_t blockSize;
+    char*  outBuff;
+    size_t outBuffSize;
+    size_t outBuffContentSize;
+    size_t outBuffFlushedSize;
+    ZBUFF_cStage stage;
+    U32    checksum;
+    U32    frameEnded;
+    ZSTD_customMem customMem;
+};   /* typedef'd tp ZBUFF_CCtx within "zbuff.h" */
+
+ZBUFF_CCtx* ZBUFF_createCCtx(void)
+{
+    return ZBUFF_createCCtx_advanced(defaultCustomMem);
+}
+
+ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem)
+{
+    ZBUFF_CCtx* zbc;
+
+    if (!customMem.customAlloc && !customMem.customFree)
+        customMem = defaultCustomMem;
+
+    if (!customMem.customAlloc || !customMem.customFree)
+        return NULL;
+
+    zbc = (ZBUFF_CCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFF_CCtx));
+    if (zbc==NULL) return NULL;
+    memset(zbc, 0, sizeof(ZBUFF_CCtx));
+    memcpy(&zbc->customMem, &customMem, sizeof(ZSTD_customMem));
+    zbc->zc = ZSTD_createCCtx_advanced(customMem);
+    if (zbc->zc == NULL) { ZBUFF_freeCCtx(zbc); return NULL; }
+    return zbc;
+}
+
+size_t ZBUFF_freeCCtx(ZBUFF_CCtx* zbc)
+{
+    if (zbc==NULL) return 0;   /* support free on NULL */
+    ZSTD_freeCCtx(zbc->zc);
+    if (zbc->inBuff) zbc->customMem.customFree(zbc->customMem.opaque, zbc->inBuff);
+    if (zbc->outBuff) zbc->customMem.customFree(zbc->customMem.opaque, zbc->outBuff);
+    zbc->customMem.customFree(zbc->customMem.opaque, zbc);
+    return 0;
+}
+
+
+/* ======   Initialization   ====== */
+
+size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
+                                   const void* dict, size_t dictSize,
+                                   ZSTD_parameters params, unsigned long long pledgedSrcSize)
+{
+    /* allocate buffers */
+    {   size_t const neededInBuffSize = (size_t)1 << params.cParams.windowLog;
+        if (zbc->inBuffSize < neededInBuffSize) {
+            zbc->inBuffSize = neededInBuffSize;
+            zbc->customMem.customFree(zbc->customMem.opaque, zbc->inBuff);   /* should not be necessary */
+            zbc->inBuff = (char*)zbc->customMem.customAlloc(zbc->customMem.opaque, neededInBuffSize);
+            if (zbc->inBuff == NULL) return ERROR(memory_allocation);
+        }
+        zbc->blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, neededInBuffSize);
+    }
+    if (zbc->outBuffSize < ZSTD_compressBound(zbc->blockSize)+1) {
+        zbc->outBuffSize = ZSTD_compressBound(zbc->blockSize)+1;
+        zbc->customMem.customFree(zbc->customMem.opaque, zbc->outBuff);   /* should not be necessary */
+        zbc->outBuff = (char*)zbc->customMem.customAlloc(zbc->customMem.opaque, zbc->outBuffSize);
+        if (zbc->outBuff == NULL) return ERROR(memory_allocation);
+    }
+
+    { size_t const errorCode = ZSTD_compressBegin_advanced(zbc->zc, dict, dictSize, params, pledgedSrcSize);
+      if (ZSTD_isError(errorCode)) return errorCode; }
+
+    zbc->inToCompress = 0;
+    zbc->inBuffPos = 0;
+    zbc->inBuffTarget = zbc->blockSize;
+    zbc->outBuffContentSize = zbc->outBuffFlushedSize = 0;
+    zbc->stage = ZBUFFcs_load;
+    zbc->checksum = params.fParams.checksumFlag > 0;
+    zbc->frameEnded = 0;
+    return 0;   /* ready to go */
+}
+
+
+size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* zbc, const void* dict, size_t dictSize, int compressionLevel)
+{
+    ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
+    return ZBUFF_compressInit_advanced(zbc, dict, dictSize, params, 0);
+}
+
+size_t ZBUFF_compressInit(ZBUFF_CCtx* zbc, int compressionLevel)
+{
+    return ZBUFF_compressInitDictionary(zbc, NULL, 0, compressionLevel);
+}
+
+
+/* internal util function */
+MEM_STATIC size_t ZBUFF_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    size_t const length = MIN(dstCapacity, srcSize);
+    memcpy(dst, src, length);
+    return length;
+}
+
+
+/* ======   Compression   ====== */
+
+typedef enum { zbf_gather, zbf_flush, zbf_end } ZBUFF_flush_e;
+
+static size_t ZBUFF_compressContinue_generic(ZBUFF_CCtx* zbc,
+                              void* dst, size_t* dstCapacityPtr,
+                        const void* src, size_t* srcSizePtr,
+                              ZBUFF_flush_e const flush)
+{
+    U32 someMoreWork = 1;
+    const char* const istart = (const char*)src;
+    const char* const iend = istart + *srcSizePtr;
+    const char* ip = istart;
+    char* const ostart = (char*)dst;
+    char* const oend = ostart + *dstCapacityPtr;
+    char* op = ostart;
+
+    while (someMoreWork) {
+        switch(zbc->stage)
+        {
+        case ZBUFFcs_init: return ERROR(init_missing);   /* call ZBUFF_compressInit() first ! */
+
+        case ZBUFFcs_load:
+            /* complete inBuffer */
+            {   size_t const toLoad = zbc->inBuffTarget - zbc->inBuffPos;
+                size_t const loaded = ZBUFF_limitCopy(zbc->inBuff + zbc->inBuffPos, toLoad, ip, iend-ip);
+                zbc->inBuffPos += loaded;
+                ip += loaded;
+                if ( (zbc->inBuffPos==zbc->inToCompress) || (!flush && (toLoad != loaded)) ) {
+                    someMoreWork = 0; break;  /* not enough input to get a full block : stop there, wait for more */
+            }   }
+            /* compress current block (note : this stage cannot be stopped in the middle) */
+            {   void* cDst;
+                size_t cSize;
+                size_t const iSize = zbc->inBuffPos - zbc->inToCompress;
+                size_t oSize = oend-op;
+                if (oSize >= ZSTD_compressBound(iSize))
+                    cDst = op;   /* compress directly into output buffer (avoid flush stage) */
+                else
+                    cDst = zbc->outBuff, oSize = zbc->outBuffSize;
+                cSize = (flush == zbf_end) ?
+                        ZSTD_compressEnd(zbc->zc, cDst, oSize, zbc->inBuff + zbc->inToCompress, iSize) :
+                        ZSTD_compressContinue(zbc->zc, cDst, oSize, zbc->inBuff + zbc->inToCompress, iSize);
+                if (ZSTD_isError(cSize)) return cSize;
+                if (flush == zbf_end) zbc->frameEnded = 1;
+                /* prepare next block */
+                zbc->inBuffTarget = zbc->inBuffPos + zbc->blockSize;
+                if (zbc->inBuffTarget > zbc->inBuffSize)
+                    zbc->inBuffPos = 0, zbc->inBuffTarget = zbc->blockSize;   /* note : inBuffSize >= blockSize */
+                zbc->inToCompress = zbc->inBuffPos;
+                if (cDst == op) { op += cSize; break; }   /* no need to flush */
+                zbc->outBuffContentSize = cSize;
+                zbc->outBuffFlushedSize = 0;
+                zbc->stage = ZBUFFcs_flush;   /* continue to flush stage */
+            }
+
+        case ZBUFFcs_flush:
+            {   size_t const toFlush = zbc->outBuffContentSize - zbc->outBuffFlushedSize;
+                size_t const flushed = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outBuffFlushedSize, toFlush);
+                op += flushed;
+                zbc->outBuffFlushedSize += flushed;
+                if (toFlush!=flushed) { someMoreWork = 0; break; } /* dst too small to store flushed data : stop there */
+                zbc->outBuffContentSize = zbc->outBuffFlushedSize = 0;
+                zbc->stage = ZBUFFcs_load;
+                break;
+            }
+
+        case ZBUFFcs_final:
+            someMoreWork = 0;   /* do nothing */
+            break;
+
+        default:
+            return ERROR(GENERIC);   /* impossible */
+        }
+    }
+
+    *srcSizePtr = ip - istart;
+    *dstCapacityPtr = op - ostart;
+    if (zbc->frameEnded) return 0;
+    {   size_t hintInSize = zbc->inBuffTarget - zbc->inBuffPos;
+        if (hintInSize==0) hintInSize = zbc->blockSize;
+        return hintInSize;
+    }
+}
+
+size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc,
+                              void* dst, size_t* dstCapacityPtr,
+                        const void* src, size_t* srcSizePtr)
+{
+    return ZBUFF_compressContinue_generic(zbc, dst, dstCapacityPtr, src, srcSizePtr, zbf_gather);
+}
+
+
+
+/* ======   Finalize   ====== */
+
+size_t ZBUFF_compressFlush(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
+{
+    size_t srcSize = 0;
+    ZBUFF_compressContinue_generic(zbc, dst, dstCapacityPtr, &srcSize, &srcSize, zbf_flush);  /* use a valid src address instead of NULL */
+    return zbc->outBuffContentSize - zbc->outBuffFlushedSize;
+}
+
+
+size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
+{
+    BYTE* const ostart = (BYTE*)dst;
+    BYTE* const oend = ostart + *dstCapacityPtr;
+    BYTE* op = ostart;
+
+    if (zbc->stage != ZBUFFcs_final) {
+        /* flush whatever remains */
+        size_t outSize = *dstCapacityPtr;
+        size_t srcSize = 0;
+        size_t const notEnded = ZBUFF_compressContinue_generic(zbc, dst, &outSize, &srcSize, &srcSize, zbf_end);  /* use a valid address instead of NULL */
+        size_t const remainingToFlush = zbc->outBuffContentSize - zbc->outBuffFlushedSize;
+        op += outSize;
+        if (remainingToFlush) {
+            *dstCapacityPtr = op-ostart;
+            return remainingToFlush + ZBUFF_endFrameSize + (zbc->checksum * 4);
+        }
+        /* create epilogue */
+        zbc->stage = ZBUFFcs_final;
+        zbc->outBuffContentSize = !notEnded ? 0 :
+            ZSTD_compressEnd(zbc->zc, zbc->outBuff, zbc->outBuffSize, NULL, 0);  /* write epilogue into outBuff */
+    }
+
+    /* flush epilogue */
+    {   size_t const toFlush = zbc->outBuffContentSize - zbc->outBuffFlushedSize;
+        size_t const flushed = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outBuffFlushedSize, toFlush);
+        op += flushed;
+        zbc->outBuffFlushedSize += flushed;
+        *dstCapacityPtr = op-ostart;
+        if (toFlush==flushed) zbc->stage = ZBUFFcs_init;  /* end reached */
+        return toFlush - flushed;
+    }
+}
+
+
+
+/* *************************************
+*  Tool functions
+***************************************/
+size_t ZBUFF_recommendedCInSize(void)  { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
+size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_ABSOLUTEMAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize; }
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/compress/zstd_compress.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,3264 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+
+/*-*************************************
+*  Dependencies
+***************************************/
+#include <string.h>         /* memset */
+#include "mem.h"
+#define XXH_STATIC_LINKING_ONLY   /* XXH64_state_t */
+#include "xxhash.h"               /* XXH_reset, update, digest */
+#define FSE_STATIC_LINKING_ONLY   /* FSE_encodeSymbol */
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "zstd_internal.h"  /* includes zstd.h */
+
+
+/*-*************************************
+*  Constants
+***************************************/
+static const U32 g_searchStrength = 8;   /* control skip over incompressible data */
+#define HASH_READ_SIZE 8
+typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
+
+
+/*-*************************************
+*  Helper functions
+***************************************/
+size_t ZSTD_compressBound(size_t srcSize) { return FSE_compressBound(srcSize) + 12; }
+
+
+/*-*************************************
+*  Sequence storage
+***************************************/
+static void ZSTD_resetSeqStore(seqStore_t* ssPtr)
+{
+    ssPtr->lit = ssPtr->litStart;
+    ssPtr->sequences = ssPtr->sequencesStart;
+    ssPtr->longLengthID = 0;
+}
+
+
+/*-*************************************
+*  Context memory management
+***************************************/
+struct ZSTD_CCtx_s
+{
+    const BYTE* nextSrc;    /* next block here to continue on current prefix */
+    const BYTE* base;       /* All regular indexes relative to this position */
+    const BYTE* dictBase;   /* extDict indexes relative to this position */
+    U32   dictLimit;        /* below that point, need extDict */
+    U32   lowLimit;         /* below that point, no more data */
+    U32   nextToUpdate;     /* index from which to continue dictionary update */
+    U32   nextToUpdate3;    /* index from which to continue dictionary update */
+    U32   hashLog3;         /* dispatch table : larger == faster, more memory */
+    U32   loadedDictEnd;
+    ZSTD_compressionStage_e stage;
+    U32   rep[ZSTD_REP_NUM];
+    U32   savedRep[ZSTD_REP_NUM];
+    U32   dictID;
+    ZSTD_parameters params;
+    void* workSpace;
+    size_t workSpaceSize;
+    size_t blockSize;
+    U64 frameContentSize;
+    XXH64_state_t xxhState;
+    ZSTD_customMem customMem;
+
+    seqStore_t seqStore;    /* sequences storage ptrs */
+    U32* hashTable;
+    U32* hashTable3;
+    U32* chainTable;
+    HUF_CElt* hufTable;
+    U32 flagStaticTables;
+    FSE_CTable offcodeCTable  [FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
+    FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
+    FSE_CTable litlengthCTable  [FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
+};
+
+ZSTD_CCtx* ZSTD_createCCtx(void)
+{
+    return ZSTD_createCCtx_advanced(defaultCustomMem);
+}
+
+ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
+{
+    ZSTD_CCtx* cctx;
+
+    if (!customMem.customAlloc && !customMem.customFree) customMem = defaultCustomMem;
+    if (!customMem.customAlloc || !customMem.customFree) return NULL;
+
+    cctx = (ZSTD_CCtx*) ZSTD_malloc(sizeof(ZSTD_CCtx), customMem);
+    if (!cctx) return NULL;
+    memset(cctx, 0, sizeof(ZSTD_CCtx));
+    memcpy(&(cctx->customMem), &customMem, sizeof(customMem));
+    return cctx;
+}
+
+size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
+{
+    if (cctx==NULL) return 0;   /* support free on NULL */
+    ZSTD_free(cctx->workSpace, cctx->customMem);
+    ZSTD_free(cctx, cctx->customMem);
+    return 0;   /* reserved as a potential error code in the future */
+}
+
+size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx)
+{
+    if (cctx==NULL) return 0;   /* support sizeof on NULL */
+    return sizeof(*cctx) + cctx->workSpaceSize;
+}
+
+const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx)   /* hidden interface */
+{
+    return &(ctx->seqStore);
+}
+
+static ZSTD_parameters ZSTD_getParamsFromCCtx(const ZSTD_CCtx* cctx)
+{
+    return cctx->params;
+}
+
+
+/** ZSTD_checkParams() :
+    ensure param values remain within authorized range.
+    @return : 0, or an error code if one value is beyond authorized range */
+size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
+{
+#   define CLAMPCHECK(val,min,max) { if ((val<min) | (val>max)) return ERROR(compressionParameter_unsupported); }
+    CLAMPCHECK(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
+    CLAMPCHECK(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
+    CLAMPCHECK(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
+    CLAMPCHECK(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
+    { U32 const searchLengthMin = ((cParams.strategy == ZSTD_fast) | (cParams.strategy == ZSTD_greedy)) ? ZSTD_SEARCHLENGTH_MIN+1 : ZSTD_SEARCHLENGTH_MIN;
+      U32 const searchLengthMax = (cParams.strategy == ZSTD_fast) ? ZSTD_SEARCHLENGTH_MAX : ZSTD_SEARCHLENGTH_MAX-1;
+      CLAMPCHECK(cParams.searchLength, searchLengthMin, searchLengthMax); }
+    CLAMPCHECK(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX);
+    if ((U32)(cParams.strategy) > (U32)ZSTD_btopt2) return ERROR(compressionParameter_unsupported);
+    return 0;
+}
+
+
+/** ZSTD_adjustCParams() :
+    optimize `cPar` for a given input (`srcSize` and `dictSize`).
+    mostly downsizing to reduce memory consumption and initialization.
+    Both `srcSize` and `dictSize` are optional (use 0 if unknown),
+    but if both are 0, no optimization can be done.
+    Note : cPar is considered validated at this stage. Use ZSTD_checkParams() to ensure that. */
+ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize)
+{
+    if (srcSize+dictSize == 0) return cPar;   /* no size information available : no adjustment */
+
+    /* resize params, to use less memory when necessary */
+    {   U32 const minSrcSize = (srcSize==0) ? 500 : 0;
+        U64 const rSize = srcSize + dictSize + minSrcSize;
+        if (rSize < ((U64)1<<ZSTD_WINDOWLOG_MAX)) {
+            U32 const srcLog = MAX(ZSTD_HASHLOG_MIN, ZSTD_highbit32((U32)(rSize)-1) + 1);
+            if (cPar.windowLog > srcLog) cPar.windowLog = srcLog;
+    }   }
+    if (cPar.hashLog > cPar.windowLog) cPar.hashLog = cPar.windowLog;
+    {   U32 const btPlus = (cPar.strategy == ZSTD_btlazy2) | (cPar.strategy == ZSTD_btopt) | (cPar.strategy == ZSTD_btopt2);
+        U32 const maxChainLog = cPar.windowLog+btPlus;
+        if (cPar.chainLog > maxChainLog) cPar.chainLog = maxChainLog; }   /* <= ZSTD_CHAINLOG_MAX */
+
+    if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN) cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN;  /* required for frame header */
+
+    return cPar;
+}
+
+
+size_t ZSTD_estimateCCtxSize(ZSTD_compressionParameters cParams)
+{
+    size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, (size_t)1 << cParams.windowLog);
+    U32    const divider = (cParams.searchLength==3) ? 3 : 4;
+    size_t const maxNbSeq = blockSize / divider;
+    size_t const tokenSpace = blockSize + 11*maxNbSeq;
+
+    size_t const chainSize = (cParams.strategy == ZSTD_fast) ? 0 : (1 << cParams.chainLog);
+    size_t const hSize = ((size_t)1) << cParams.hashLog;
+    U32    const hashLog3 = (cParams.searchLength>3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, cParams.windowLog);
+    size_t const h3Size = ((size_t)1) << hashLog3;
+    size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
+
+    size_t const optSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits))*sizeof(U32)
+                          + (ZSTD_OPT_NUM+1)*(sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
+    size_t const neededSpace = tableSpace + (256*sizeof(U32)) /* huffTable */ + tokenSpace
+                             + (((cParams.strategy == ZSTD_btopt) || (cParams.strategy == ZSTD_btopt2)) ? optSpace : 0);
+
+    return sizeof(ZSTD_CCtx) + neededSpace;
+}
+
+
+static U32 ZSTD_equivalentParams(ZSTD_parameters param1, ZSTD_parameters param2)
+{
+    return (param1.cParams.hashLog  == param2.cParams.hashLog)
+         & (param1.cParams.chainLog == param2.cParams.chainLog)
+         & (param1.cParams.strategy == param2.cParams.strategy)
+         & ((param1.cParams.searchLength==3) == (param2.cParams.searchLength==3));
+}
+
+/*! ZSTD_continueCCtx() :
+    reuse CCtx without reset (note : requires no dictionary) */
+static size_t ZSTD_continueCCtx(ZSTD_CCtx* cctx, ZSTD_parameters params, U64 frameContentSize)
+{
+    U32 const end = (U32)(cctx->nextSrc - cctx->base);
+    cctx->params = params;
+    cctx->frameContentSize = frameContentSize;
+    cctx->lowLimit = end;
+    cctx->dictLimit = end;
+    cctx->nextToUpdate = end+1;
+    cctx->stage = ZSTDcs_init;
+    cctx->dictID = 0;
+    cctx->loadedDictEnd = 0;
+    { int i; for (i=0; i<ZSTD_REP_NUM; i++) cctx->rep[i] = repStartValue[i]; }
+    cctx->seqStore.litLengthSum = 0;  /* force reset of btopt stats */
+    XXH64_reset(&cctx->xxhState, 0);
+    return 0;
+}
+
+typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset, ZSTDcrp_fullReset } ZSTD_compResetPolicy_e;
+
+/*! ZSTD_resetCCtx_advanced() :
+    note : 'params' must be validated */
+static size_t ZSTD_resetCCtx_advanced (ZSTD_CCtx* zc,
+                                       ZSTD_parameters params, U64 frameContentSize,
+                                       ZSTD_compResetPolicy_e const crp)
+{
+    if (crp == ZSTDcrp_continue)
+        if (ZSTD_equivalentParams(params, zc->params))
+            return ZSTD_continueCCtx(zc, params, frameContentSize);
+
+    {   size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, (size_t)1 << params.cParams.windowLog);
+        U32    const divider = (params.cParams.searchLength==3) ? 3 : 4;
+        size_t const maxNbSeq = blockSize / divider;
+        size_t const tokenSpace = blockSize + 11*maxNbSeq;
+        size_t const chainSize = (params.cParams.strategy == ZSTD_fast) ? 0 : (1 << params.cParams.chainLog);
+        size_t const hSize = ((size_t)1) << params.cParams.hashLog;
+        U32    const hashLog3 = (params.cParams.searchLength>3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, params.cParams.windowLog);
+        size_t const h3Size = ((size_t)1) << hashLog3;
+        size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
+        void* ptr;
+
+        /* Check if workSpace is large enough, alloc a new one if needed */
+        {   size_t const optSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits))*sizeof(U32)
+                                  + (ZSTD_OPT_NUM+1)*(sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
+            size_t const neededSpace = tableSpace + (256*sizeof(U32)) /* huffTable */ + tokenSpace
+                                  + (((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btopt2)) ? optSpace : 0);
+            if (zc->workSpaceSize < neededSpace) {
+                ZSTD_free(zc->workSpace, zc->customMem);
+                zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem);
+                if (zc->workSpace == NULL) return ERROR(memory_allocation);
+                zc->workSpaceSize = neededSpace;
+        }   }
+
+        if (crp!=ZSTDcrp_noMemset) memset(zc->workSpace, 0, tableSpace);   /* reset tables only */
+        XXH64_reset(&zc->xxhState, 0);
+        zc->hashLog3 = hashLog3;
+        zc->hashTable = (U32*)(zc->workSpace);
+        zc->chainTable = zc->hashTable + hSize;
+        zc->hashTable3 = zc->chainTable + chainSize;
+        ptr = zc->hashTable3 + h3Size;
+        zc->hufTable = (HUF_CElt*)ptr;
+        zc->flagStaticTables = 0;
+        ptr = ((U32*)ptr) + 256;  /* note : HUF_CElt* is incomplete type, size is simulated using U32 */
+
+        zc->nextToUpdate = 1;
+        zc->nextSrc = NULL;
+        zc->base = NULL;
+        zc->dictBase = NULL;
+        zc->dictLimit = 0;
+        zc->lowLimit = 0;
+        zc->params = params;
+        zc->blockSize = blockSize;
+        zc->frameContentSize = frameContentSize;
+        { int i; for (i=0; i<ZSTD_REP_NUM; i++) zc->rep[i] = repStartValue[i]; }
+
+        if ((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btopt2)) {
+            zc->seqStore.litFreq = (U32*)ptr;
+            zc->seqStore.litLengthFreq = zc->seqStore.litFreq + (1<<Litbits);
+            zc->seqStore.matchLengthFreq = zc->seqStore.litLengthFreq + (MaxLL+1);
+            zc->seqStore.offCodeFreq = zc->seqStore.matchLengthFreq + (MaxML+1);
+            ptr = zc->seqStore.offCodeFreq + (MaxOff+1);
+            zc->seqStore.matchTable = (ZSTD_match_t*)ptr;
+            ptr = zc->seqStore.matchTable + ZSTD_OPT_NUM+1;
+            zc->seqStore.priceTable = (ZSTD_optimal_t*)ptr;
+            ptr = zc->seqStore.priceTable + ZSTD_OPT_NUM+1;
+            zc->seqStore.litLengthSum = 0;
+        }
+        zc->seqStore.sequencesStart = (seqDef*)ptr;
+        ptr = zc->seqStore.sequencesStart + maxNbSeq;
+        zc->seqStore.llCode = (BYTE*) ptr;
+        zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq;
+        zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq;
+        zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq;
+
+        zc->stage = ZSTDcs_init;
+        zc->dictID = 0;
+        zc->loadedDictEnd = 0;
+
+        return 0;
+    }
+}
+
+
+/*! ZSTD_copyCCtx() :
+*   Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
+*   Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
+*   @return : 0, or an error code */
+size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize)
+{
+    if (srcCCtx->stage!=ZSTDcs_init) return ERROR(stage_wrong);
+
+    memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
+    ZSTD_resetCCtx_advanced(dstCCtx, srcCCtx->params, pledgedSrcSize, ZSTDcrp_noMemset);
+
+    /* copy tables */
+    {   size_t const chainSize = (srcCCtx->params.cParams.strategy == ZSTD_fast) ? 0 : (1 << srcCCtx->params.cParams.chainLog);
+        size_t const hSize = ((size_t)1) << srcCCtx->params.cParams.hashLog;
+        size_t const h3Size = (size_t)1 << srcCCtx->hashLog3;
+        size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
+        memcpy(dstCCtx->workSpace, srcCCtx->workSpace, tableSpace);
+    }
+
+    /* copy dictionary offsets */
+    dstCCtx->nextToUpdate = srcCCtx->nextToUpdate;
+    dstCCtx->nextToUpdate3= srcCCtx->nextToUpdate3;
+    dstCCtx->nextSrc      = srcCCtx->nextSrc;
+    dstCCtx->base         = srcCCtx->base;
+    dstCCtx->dictBase     = srcCCtx->dictBase;
+    dstCCtx->dictLimit    = srcCCtx->dictLimit;
+    dstCCtx->lowLimit     = srcCCtx->lowLimit;
+    dstCCtx->loadedDictEnd= srcCCtx->loadedDictEnd;
+    dstCCtx->dictID       = srcCCtx->dictID;
+
+    /* copy entropy tables */
+    dstCCtx->flagStaticTables = srcCCtx->flagStaticTables;
+    if (srcCCtx->flagStaticTables) {
+        memcpy(dstCCtx->hufTable, srcCCtx->hufTable, 256*4);
+        memcpy(dstCCtx->litlengthCTable, srcCCtx->litlengthCTable, sizeof(dstCCtx->litlengthCTable));
+        memcpy(dstCCtx->matchlengthCTable, srcCCtx->matchlengthCTable, sizeof(dstCCtx->matchlengthCTable));
+        memcpy(dstCCtx->offcodeCTable, srcCCtx->offcodeCTable, sizeof(dstCCtx->offcodeCTable));
+    }
+
+    return 0;
+}
+
+
+/*! ZSTD_reduceTable() :
+*   reduce table indexes by `reducerValue` */
+static void ZSTD_reduceTable (U32* const table, U32 const size, U32 const reducerValue)
+{
+    U32 u;
+    for (u=0 ; u < size ; u++) {
+        if (table[u] < reducerValue) table[u] = 0;
+        else table[u] -= reducerValue;
+    }
+}
+
+/*! ZSTD_reduceIndex() :
+*   rescale all indexes to avoid future overflow (indexes are U32) */
+static void ZSTD_reduceIndex (ZSTD_CCtx* zc, const U32 reducerValue)
+{
+    { U32 const hSize = 1 << zc->params.cParams.hashLog;
+      ZSTD_reduceTable(zc->hashTable, hSize, reducerValue); }
+
+    { U32 const chainSize = (zc->params.cParams.strategy == ZSTD_fast) ? 0 : (1 << zc->params.cParams.chainLog);
+      ZSTD_reduceTable(zc->chainTable, chainSize, reducerValue); }
+
+    { U32 const h3Size = (zc->hashLog3) ? 1 << zc->hashLog3 : 0;
+      ZSTD_reduceTable(zc->hashTable3, h3Size, reducerValue); }
+}
+
+
+/*-*******************************************************
+*  Block entropic compression
+*********************************************************/
+
+/* See doc/zstd_compression_format.md for detailed format description */
+
+size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    if (srcSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall);
+    memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
+    MEM_writeLE24(dst, (U32)(srcSize << 2) + (U32)bt_raw);
+    return ZSTD_blockHeaderSize+srcSize;
+}
+
+
+static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    BYTE* const ostart = (BYTE* const)dst;
+    U32   const flSize = 1 + (srcSize>31) + (srcSize>4095);
+
+    if (srcSize + flSize > dstCapacity) return ERROR(dstSize_tooSmall);
+
+    switch(flSize)
+    {
+        case 1: /* 2 - 1 - 5 */
+            ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
+            break;
+        case 2: /* 2 - 2 - 12 */
+            MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
+            break;
+        default:   /*note : should not be necessary : flSize is within {1,2,3} */
+        case 3: /* 2 - 2 - 20 */
+            MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
+            break;
+    }
+
+    memcpy(ostart + flSize, src, srcSize);
+    return srcSize + flSize;
+}
+
+static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    BYTE* const ostart = (BYTE* const)dst;
+    U32   const flSize = 1 + (srcSize>31) + (srcSize>4095);
+
+    (void)dstCapacity;  /* dstCapacity already guaranteed to be >=4, hence large enough */
+
+    switch(flSize)
+    {
+        case 1: /* 2 - 1 - 5 */
+            ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
+            break;
+        case 2: /* 2 - 2 - 12 */
+            MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
+            break;
+        default:   /*note : should not be necessary : flSize is necessarily within {1,2,3} */
+        case 3: /* 2 - 2 - 20 */
+            MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
+            break;
+    }
+
+    ostart[flSize] = *(const BYTE*)src;
+    return flSize+1;
+}
+
+
+static size_t ZSTD_minGain(size_t srcSize) { return (srcSize >> 6) + 2; }
+
+static size_t ZSTD_compressLiterals (ZSTD_CCtx* zc,
+                                     void* dst, size_t dstCapacity,
+                               const void* src, size_t srcSize)
+{
+    size_t const minGain = ZSTD_minGain(srcSize);
+    size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
+    BYTE*  const ostart = (BYTE*)dst;
+    U32 singleStream = srcSize < 256;
+    symbolEncodingType_e hType = set_compressed;
+    size_t cLitSize;
+
+
+    /* small ? don't even attempt compression (speed opt) */
+#   define LITERAL_NOENTROPY 63
+    {   size_t const minLitSize = zc->flagStaticTables ? 6 : LITERAL_NOENTROPY;
+        if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
+    }
+
+    if (dstCapacity < lhSize+1) return ERROR(dstSize_tooSmall);   /* not enough space for compression */
+    if (zc->flagStaticTables && (lhSize==3)) {
+        hType = set_repeat;
+        singleStream = 1;
+        cLitSize = HUF_compress1X_usingCTable(ostart+lhSize, dstCapacity-lhSize, src, srcSize, zc->hufTable);
+    } else {
+        cLitSize = singleStream ? HUF_compress1X(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11)
+                                : HUF_compress2 (ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11);
+    }
+
+    if ((cLitSize==0) | (cLitSize >= srcSize - minGain))
+        return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
+    if (cLitSize==1)
+        return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
+
+    /* Build header */
+    switch(lhSize)
+    {
+    case 3: /* 2 - 2 - 10 - 10 */
+        {   U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
+            MEM_writeLE24(ostart, lhc);
+            break;
+        }
+    case 4: /* 2 - 2 - 14 - 14 */
+        {   U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
+            MEM_writeLE32(ostart, lhc);
+            break;
+        }
+    default:   /* should not be necessary, lhSize is only {3,4,5} */
+    case 5: /* 2 - 2 - 18 - 18 */
+        {   U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
+            MEM_writeLE32(ostart, lhc);
+            ostart[4] = (BYTE)(cLitSize >> 10);
+            break;
+        }
+    }
+    return lhSize+cLitSize;
+}
+
+static const BYTE LL_Code[64] = {  0,  1,  2,  3,  4,  5,  6,  7,
+                                   8,  9, 10, 11, 12, 13, 14, 15,
+                                  16, 16, 17, 17, 18, 18, 19, 19,
+                                  20, 20, 20, 20, 21, 21, 21, 21,
+                                  22, 22, 22, 22, 22, 22, 22, 22,
+                                  23, 23, 23, 23, 23, 23, 23, 23,
+                                  24, 24, 24, 24, 24, 24, 24, 24,
+                                  24, 24, 24, 24, 24, 24, 24, 24 };
+
+static const BYTE ML_Code[128] = { 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
+                                  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+                                  32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
+                                  38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
+                                  40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
+                                  41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
+                                  42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
+                                  42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
+
+
+void ZSTD_seqToCodes(const seqStore_t* seqStorePtr)
+{
+    BYTE const LL_deltaCode = 19;
+    BYTE const ML_deltaCode = 36;
+    const seqDef* const sequences = seqStorePtr->sequencesStart;
+    BYTE* const llCodeTable = seqStorePtr->llCode;
+    BYTE* const ofCodeTable = seqStorePtr->ofCode;
+    BYTE* const mlCodeTable = seqStorePtr->mlCode;
+    U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+    U32 u;
+    for (u=0; u<nbSeq; u++) {
+        U32 const llv = sequences[u].litLength;
+        U32 const mlv = sequences[u].matchLength;
+        llCodeTable[u] = (llv> 63) ? (BYTE)ZSTD_highbit32(llv) + LL_deltaCode : LL_Code[llv];
+        ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
+        mlCodeTable[u] = (mlv>127) ? (BYTE)ZSTD_highbit32(mlv) + ML_deltaCode : ML_Code[mlv];
+    }
+    if (seqStorePtr->longLengthID==1)
+        llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
+    if (seqStorePtr->longLengthID==2)
+        mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
+}
+
+
+size_t ZSTD_compressSequences(ZSTD_CCtx* zc,
+                              void* dst, size_t dstCapacity,
+                              size_t srcSize)
+{
+    const seqStore_t* seqStorePtr = &(zc->seqStore);
+    U32 count[MaxSeq+1];
+    S16 norm[MaxSeq+1];
+    FSE_CTable* CTable_LitLength = zc->litlengthCTable;
+    FSE_CTable* CTable_OffsetBits = zc->offcodeCTable;
+    FSE_CTable* CTable_MatchLength = zc->matchlengthCTable;
+    U32 LLtype, Offtype, MLtype;   /* compressed, raw or rle */
+    const seqDef* const sequences = seqStorePtr->sequencesStart;
+    const BYTE* const ofCodeTable = seqStorePtr->ofCode;
+    const BYTE* const llCodeTable = seqStorePtr->llCode;
+    const BYTE* const mlCodeTable = seqStorePtr->mlCode;
+    BYTE* const ostart = (BYTE*)dst;
+    BYTE* const oend = ostart + dstCapacity;
+    BYTE* op = ostart;
+    size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
+    BYTE* seqHead;
+
+    /* Compress literals */
+    {   const BYTE* const literals = seqStorePtr->litStart;
+        size_t const litSize = seqStorePtr->lit - literals;
+        size_t const cSize = ZSTD_compressLiterals(zc, op, dstCapacity, literals, litSize);
+        if (ZSTD_isError(cSize)) return cSize;
+        op += cSize;
+    }
+
+    /* Sequences Header */
+    if ((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead */) return ERROR(dstSize_tooSmall);
+    if (nbSeq < 0x7F) *op++ = (BYTE)nbSeq;
+    else if (nbSeq < LONGNBSEQ) op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
+    else op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
+    if (nbSeq==0) goto _check_compressibility;
+
+    /* seqHead : flags for FSE encoding type */
+    seqHead = op++;
+
+#define MIN_SEQ_FOR_DYNAMIC_FSE   64
+#define MAX_SEQ_FOR_STATIC_FSE  1000
+
+    /* convert length/distances into codes */
+    ZSTD_seqToCodes(seqStorePtr);
+
+    /* CTable for Literal Lengths */
+    {   U32 max = MaxLL;
+        size_t const mostFrequent = FSE_countFast(count, &max, llCodeTable, nbSeq);
+        if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
+            *op++ = llCodeTable[0];
+            FSE_buildCTable_rle(CTable_LitLength, (BYTE)max);
+            LLtype = set_rle;
+        } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
+            LLtype = set_repeat;
+        } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (LL_defaultNormLog-1)))) {
+            FSE_buildCTable(CTable_LitLength, LL_defaultNorm, MaxLL, LL_defaultNormLog);
+            LLtype = set_basic;
+        } else {
+            size_t nbSeq_1 = nbSeq;
+            const U32 tableLog = FSE_optimalTableLog(LLFSELog, nbSeq, max);
+            if (count[llCodeTable[nbSeq-1]]>1) { count[llCodeTable[nbSeq-1]]--; nbSeq_1--; }
+            FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
+            { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog);   /* overflow protected */
+              if (FSE_isError(NCountSize)) return ERROR(GENERIC);
+              op += NCountSize; }
+            FSE_buildCTable(CTable_LitLength, norm, max, tableLog);
+            LLtype = set_compressed;
+    }   }
+
+    /* CTable for Offsets */
+    {   U32 max = MaxOff;
+        size_t const mostFrequent = FSE_countFast(count, &max, ofCodeTable, nbSeq);
+        if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
+            *op++ = ofCodeTable[0];
+            FSE_buildCTable_rle(CTable_OffsetBits, (BYTE)max);
+            Offtype = set_rle;
+        } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
+            Offtype = set_repeat;
+        } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (OF_defaultNormLog-1)))) {
+            FSE_buildCTable(CTable_OffsetBits, OF_defaultNorm, MaxOff, OF_defaultNormLog);
+            Offtype = set_basic;
+        } else {
+            size_t nbSeq_1 = nbSeq;
+            const U32 tableLog = FSE_optimalTableLog(OffFSELog, nbSeq, max);
+            if (count[ofCodeTable[nbSeq-1]]>1) { count[ofCodeTable[nbSeq-1]]--; nbSeq_1--; }
+            FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
+            { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog);   /* overflow protected */
+              if (FSE_isError(NCountSize)) return ERROR(GENERIC);
+              op += NCountSize; }
+            FSE_buildCTable(CTable_OffsetBits, norm, max, tableLog);
+            Offtype = set_compressed;
+    }   }
+
+    /* CTable for MatchLengths */
+    {   U32 max = MaxML;
+        size_t const mostFrequent = FSE_countFast(count, &max, mlCodeTable, nbSeq);
+        if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
+            *op++ = *mlCodeTable;
+            FSE_buildCTable_rle(CTable_MatchLength, (BYTE)max);
+            MLtype = set_rle;
+        } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
+            MLtype = set_repeat;
+        } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (ML_defaultNormLog-1)))) {
+            FSE_buildCTable(CTable_MatchLength, ML_defaultNorm, MaxML, ML_defaultNormLog);
+            MLtype = set_basic;
+        } else {
+            size_t nbSeq_1 = nbSeq;
+            const U32 tableLog = FSE_optimalTableLog(MLFSELog, nbSeq, max);
+            if (count[mlCodeTable[nbSeq-1]]>1) { count[mlCodeTable[nbSeq-1]]--; nbSeq_1--; }
+            FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
+            { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog);   /* overflow protected */
+              if (FSE_isError(NCountSize)) return ERROR(GENERIC);
+              op += NCountSize; }
+            FSE_buildCTable(CTable_MatchLength, norm, max, tableLog);
+            MLtype = set_compressed;
+    }   }
+
+    *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
+    zc->flagStaticTables = 0;
+
+    /* Encoding Sequences */
+    {   BIT_CStream_t blockStream;
+        FSE_CState_t  stateMatchLength;
+        FSE_CState_t  stateOffsetBits;
+        FSE_CState_t  stateLitLength;
+
+        CHECK_E(BIT_initCStream(&blockStream, op, oend-op), dstSize_tooSmall); /* not enough space remaining */
+
+        /* first symbols */
+        FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
+        FSE_initCState2(&stateOffsetBits,  CTable_OffsetBits,  ofCodeTable[nbSeq-1]);
+        FSE_initCState2(&stateLitLength,   CTable_LitLength,   llCodeTable[nbSeq-1]);
+        BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
+        if (MEM_32bits()) BIT_flushBits(&blockStream);
+        BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
+        if (MEM_32bits()) BIT_flushBits(&blockStream);
+        BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
+        BIT_flushBits(&blockStream);
+
+        {   size_t n;
+            for (n=nbSeq-2 ; n<nbSeq ; n--) {      /* intentional underflow */
+                BYTE const llCode = llCodeTable[n];
+                BYTE const ofCode = ofCodeTable[n];
+                BYTE const mlCode = mlCodeTable[n];
+                U32  const llBits = LL_bits[llCode];
+                U32  const ofBits = ofCode;                                     /* 32b*/  /* 64b*/
+                U32  const mlBits = ML_bits[mlCode];
+                                                                                /* (7)*/  /* (7)*/
+                FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode);       /* 15 */  /* 15 */
+                FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode);      /* 24 */  /* 24 */
+                if (MEM_32bits()) BIT_flushBits(&blockStream);                  /* (7)*/
+                FSE_encodeSymbol(&blockStream, &stateLitLength, llCode);        /* 16 */  /* 33 */
+                if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
+                    BIT_flushBits(&blockStream);                                /* (7)*/
+                BIT_addBits(&blockStream, sequences[n].litLength, llBits);
+                if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
+                BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
+                if (MEM_32bits()) BIT_flushBits(&blockStream);                  /* (7)*/
+                BIT_addBits(&blockStream, sequences[n].offset, ofBits);         /* 31 */
+                BIT_flushBits(&blockStream);                                    /* (7)*/
+        }   }
+
+        FSE_flushCState(&blockStream, &stateMatchLength);
+        FSE_flushCState(&blockStream, &stateOffsetBits);
+        FSE_flushCState(&blockStream, &stateLitLength);
+
+        {   size_t const streamSize = BIT_closeCStream(&blockStream);
+            if (streamSize==0) return ERROR(dstSize_tooSmall);   /* not enough space */
+            op += streamSize;
+    }   }
+
+    /* check compressibility */
+_check_compressibility:
+    { size_t const minGain = ZSTD_minGain(srcSize);
+      size_t const maxCSize = srcSize - minGain;
+      if ((size_t)(op-ostart) >= maxCSize) return 0; }
+
+    /* confirm repcodes */
+    { int i; for (i=0; i<ZSTD_REP_NUM; i++) zc->rep[i] = zc->savedRep[i]; }
+
+    return op - ostart;
+}
+
+
+/*! ZSTD_storeSeq() :
+    Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
+    `offsetCode` : distance to match, or 0 == repCode.
+    `matchCode` : matchLength - MINMATCH
+*/
+MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t matchCode)
+{
+#if 0  /* for debug */
+    static const BYTE* g_start = NULL;
+    const U32 pos = (U32)(literals - g_start);
+    if (g_start==NULL) g_start = literals;
+    //if ((pos > 1) && (pos < 50000))
+        printf("Cpos %6u :%5u literals & match %3u bytes at distance %6u \n",
+               pos, (U32)litLength, (U32)matchCode+MINMATCH, (U32)offsetCode);
+#endif
+    /* copy Literals */
+    ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
+    seqStorePtr->lit += litLength;
+
+    /* literal Length */
+    if (litLength>0xFFFF) { seqStorePtr->longLengthID = 1; seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); }
+    seqStorePtr->sequences[0].litLength = (U16)litLength;
+
+    /* match offset */
+    seqStorePtr->sequences[0].offset = offsetCode + 1;
+
+    /* match Length */
+    if (matchCode>0xFFFF) { seqStorePtr->longLengthID = 2; seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); }
+    seqStorePtr->sequences[0].matchLength = (U16)matchCode;
+
+    seqStorePtr->sequences++;
+}
+
+
+/*-*************************************
+*  Match length counter
+***************************************/
+static unsigned ZSTD_NbCommonBytes (register size_t val)
+{
+    if (MEM_isLittleEndian()) {
+        if (MEM_64bits()) {
+#       if defined(_MSC_VER) && defined(_WIN64)
+            unsigned long r = 0;
+            _BitScanForward64( &r, (U64)val );
+            return (unsigned)(r>>3);
+#       elif defined(__GNUC__) && (__GNUC__ >= 3)
+            return (__builtin_ctzll((U64)val) >> 3);
+#       else
+            static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
+            return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
+#       endif
+        } else { /* 32 bits */
+#       if defined(_MSC_VER)
+            unsigned long r=0;
+            _BitScanForward( &r, (U32)val );
+            return (unsigned)(r>>3);
+#       elif defined(__GNUC__) && (__GNUC__ >= 3)
+            return (__builtin_ctz((U32)val) >> 3);
+#       else
+            static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
+            return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
+#       endif
+        }
+    } else {  /* Big Endian CPU */
+        if (MEM_64bits()) {
+#       if defined(_MSC_VER) && defined(_WIN64)
+            unsigned long r = 0;
+            _BitScanReverse64( &r, val );
+            return (unsigned)(r>>3);
+#       elif defined(__GNUC__) && (__GNUC__ >= 3)
+            return (__builtin_clzll(val) >> 3);
+#       else
+            unsigned r;
+            const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
+            if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
+            if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
+            r += (!val);
+            return r;
+#       endif
+        } else { /* 32 bits */
+#       if defined(_MSC_VER)
+            unsigned long r = 0;
+            _BitScanReverse( &r, (unsigned long)val );
+            return (unsigned)(r>>3);
+#       elif defined(__GNUC__) && (__GNUC__ >= 3)
+            return (__builtin_clz((U32)val) >> 3);
+#       else
+            unsigned r;
+            if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
+            r += (!val);
+            return r;
+#       endif
+    }   }
+}
+
+
+static size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
+{
+    const BYTE* const pStart = pIn;
+    const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
+
+    while (pIn < pInLoopLimit) {
+        size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
+        if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
+        pIn += ZSTD_NbCommonBytes(diff);
+        return (size_t)(pIn - pStart);
+    }
+    if (MEM_64bits()) if ((pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
+    if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
+    if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
+    return (size_t)(pIn - pStart);
+}
+
+/** ZSTD_count_2segments() :
+*   can count match length with `ip` & `match` in 2 different segments.
+*   convention : on reaching mEnd, match count continue starting from iStart
+*/
+static size_t ZSTD_count_2segments(const BYTE* ip, const BYTE* match, const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
+{
+    const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
+    size_t const matchLength = ZSTD_count(ip, match, vEnd);
+    if (match + matchLength != mEnd) return matchLength;
+    return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
+}
+
+
+/*-*************************************
+*  Hashes
+***************************************/
+static const U32 prime3bytes = 506832829U;
+static U32    ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes)  >> (32-h) ; }
+MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); }   /* only in zstd_opt.h */
+
+static const U32 prime4bytes = 2654435761U;
+static U32    ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
+static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
+
+static const U64 prime5bytes = 889523592379ULL;
+static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u  << (64-40)) * prime5bytes) >> (64-h)) ; }
+static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
+
+static const U64 prime6bytes = 227718039650203ULL;
+static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u  << (64-48)) * prime6bytes) >> (64-h)) ; }
+static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
+
+static const U64 prime7bytes = 58295818150454627ULL;
+static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u  << (64-56)) * prime7bytes) >> (64-h)) ; }
+static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
+
+static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
+static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
+static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
+
+static size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
+{
+    switch(mls)
+    {
+    default:
+    case 4: return ZSTD_hash4Ptr(p, hBits);
+    case 5: return ZSTD_hash5Ptr(p, hBits);
+    case 6: return ZSTD_hash6Ptr(p, hBits);
+    case 7: return ZSTD_hash7Ptr(p, hBits);
+    case 8: return ZSTD_hash8Ptr(p, hBits);
+    }
+}
+
+
+/*-*************************************
+*  Fast Scan
+***************************************/
+static void ZSTD_fillHashTable (ZSTD_CCtx* zc, const void* end, const U32 mls)
+{
+    U32* const hashTable = zc->hashTable;
+    U32  const hBits = zc->params.cParams.hashLog;
+    const BYTE* const base = zc->base;
+    const BYTE* ip = base + zc->nextToUpdate;
+    const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
+    const size_t fastHashFillStep = 3;
+
+    while(ip <= iend) {
+        hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base);
+        ip += fastHashFillStep;
+    }
+}
+
+
+FORCE_INLINE
+void ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
+                               const void* src, size_t srcSize,
+                               const U32 mls)
+{
+    U32* const hashTable = cctx->hashTable;
+    U32  const hBits = cctx->params.cParams.hashLog;
+    seqStore_t* seqStorePtr = &(cctx->seqStore);
+    const BYTE* const base = cctx->base;
+    const BYTE* const istart = (const BYTE*)src;
+    const BYTE* ip = istart;
+    const BYTE* anchor = istart;
+    const U32   lowestIndex = cctx->dictLimit;
+    const BYTE* const lowest = base + lowestIndex;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* const ilimit = iend - HASH_READ_SIZE;
+    U32 offset_1=cctx->rep[0], offset_2=cctx->rep[1];
+    U32 offsetSaved = 0;
+
+    /* init */
+    ip += (ip==lowest);
+    {   U32 const maxRep = (U32)(ip-lowest);
+        if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
+        if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
+    }
+
+    /* Main Search Loop */
+    while (ip < ilimit) {   /* < instead of <=, because repcode check at (ip+1) */
+        size_t mLength;
+        size_t const h = ZSTD_hashPtr(ip, hBits, mls);
+        U32 const current = (U32)(ip-base);
+        U32 const matchIndex = hashTable[h];
+        const BYTE* match = base + matchIndex;
+        hashTable[h] = current;   /* update hash table */
+
+        if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
+            mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
+            ip++;
+            ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
+        } else {
+            U32 offset;
+            if ( (matchIndex <= lowestIndex) || (MEM_read32(match) != MEM_read32(ip)) ) {
+                ip += ((ip-anchor) >> g_searchStrength) + 1;
+                continue;
+            }
+            mLength = ZSTD_count(ip+4, match+4, iend) + 4;
+            offset = (U32)(ip-match);
+            while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+            offset_2 = offset_1;
+            offset_1 = offset;
+
+            ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+        }
+
+        /* match found */
+        ip += mLength;
+        anchor = ip;
+
+        if (ip <= ilimit) {
+            /* Fill Table */
+            hashTable[ZSTD_hashPtr(base+current+2, hBits, mls)] = current+2;  /* here because current+2 could be > iend-8 */
+            hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base);
+            /* check immediate repcode */
+            while ( (ip <= ilimit)
+                 && ( (offset_2>0)
+                 & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
+                /* store sequence */
+                size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
+                { U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; }  /* swap offset_2 <=> offset_1 */
+                hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip-base);
+                ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
+                ip += rLength;
+                anchor = ip;
+                continue;   /* faster when present ... (?) */
+    }   }   }
+
+    /* save reps for next block */
+    cctx->savedRep[0] = offset_1 ? offset_1 : offsetSaved;
+    cctx->savedRep[1] = offset_2 ? offset_2 : offsetSaved;
+
+    /* Last Literals */
+    {   size_t const lastLLSize = iend - anchor;
+        memcpy(seqStorePtr->lit, anchor, lastLLSize);
+        seqStorePtr->lit += lastLLSize;
+    }
+}
+
+
+static void ZSTD_compressBlock_fast(ZSTD_CCtx* ctx,
+                       const void* src, size_t srcSize)
+{
+    const U32 mls = ctx->params.cParams.searchLength;
+    switch(mls)
+    {
+    default:
+    case 4 :
+        ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 4); return;
+    case 5 :
+        ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 5); return;
+    case 6 :
+        ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 6); return;
+    case 7 :
+        ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 7); return;
+    }
+}
+
+
+static void ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
+                                 const void* src, size_t srcSize,
+                                 const U32 mls)
+{
+    U32* hashTable = ctx->hashTable;
+    const U32 hBits = ctx->params.cParams.hashLog;
+    seqStore_t* seqStorePtr = &(ctx->seqStore);
+    const BYTE* const base = ctx->base;
+    const BYTE* const dictBase = ctx->dictBase;
+    const BYTE* const istart = (const BYTE*)src;
+    const BYTE* ip = istart;
+    const BYTE* anchor = istart;
+    const U32   lowestIndex = ctx->lowLimit;
+    const BYTE* const dictStart = dictBase + lowestIndex;
+    const U32   dictLimit = ctx->dictLimit;
+    const BYTE* const lowPrefixPtr = base + dictLimit;
+    const BYTE* const dictEnd = dictBase + dictLimit;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* const ilimit = iend - 8;
+    U32 offset_1=ctx->rep[0], offset_2=ctx->rep[1];
+
+    /* Search Loop */
+    while (ip < ilimit) {  /* < instead of <=, because (ip+1) */
+        const size_t h = ZSTD_hashPtr(ip, hBits, mls);
+        const U32 matchIndex = hashTable[h];
+        const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base;
+        const BYTE* match = matchBase + matchIndex;
+        const U32 current = (U32)(ip-base);
+        const U32 repIndex = current + 1 - offset_1;   /* offset_1 expected <= current +1 */
+        const BYTE* repBase = repIndex < dictLimit ? dictBase : base;
+        const BYTE* repMatch = repBase + repIndex;
+        size_t mLength;
+        hashTable[h] = current;   /* update hash table */
+
+        if ( (((U32)((dictLimit-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex))
+           && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+            const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
+            mLength = ZSTD_count_2segments(ip+1+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repMatchEnd, lowPrefixPtr) + EQUAL_READ32;
+            ip++;
+            ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
+        } else {
+            if ( (matchIndex < lowestIndex) ||
+                 (MEM_read32(match) != MEM_read32(ip)) ) {
+                ip += ((ip-anchor) >> g_searchStrength) + 1;
+                continue;
+            }
+            {   const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend;
+                const BYTE* lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
+                U32 offset;
+                mLength = ZSTD_count_2segments(ip+EQUAL_READ32, match+EQUAL_READ32, iend, matchEnd, lowPrefixPtr) + EQUAL_READ32;
+                while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; }   /* catch up */
+                offset = current - matchIndex;
+                offset_2 = offset_1;
+                offset_1 = offset;
+                ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+        }   }
+
+        /* found a match : store it */
+        ip += mLength;
+        anchor = ip;
+
+        if (ip <= ilimit) {
+            /* Fill Table */
+            hashTable[ZSTD_hashPtr(base+current+2, hBits, mls)] = current+2;
+            hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base);
+            /* check immediate repcode */
+            while (ip <= ilimit) {
+                U32 const current2 = (U32)(ip-base);
+                U32 const repIndex2 = current2 - offset_2;
+                const BYTE* repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
+                if ( (((U32)((dictLimit-1) - repIndex2) >= 3) & (repIndex2 > lowestIndex))  /* intentional overflow */
+                   && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+                    const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
+                    size_t repLength2 = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch2+EQUAL_READ32, iend, repEnd2, lowPrefixPtr) + EQUAL_READ32;
+                    U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset;   /* swap offset_2 <=> offset_1 */
+                    ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
+                    hashTable[ZSTD_hashPtr(ip, hBits, mls)] = current2;
+                    ip += repLength2;
+                    anchor = ip;
+                    continue;
+                }
+                break;
+    }   }   }
+
+    /* save reps for next block */
+    ctx->savedRep[0] = offset_1; ctx->savedRep[1] = offset_2;
+
+    /* Last Literals */
+    {   size_t const lastLLSize = iend - anchor;
+        memcpy(seqStorePtr->lit, anchor, lastLLSize);
+        seqStorePtr->lit += lastLLSize;
+    }
+}
+
+
+static void ZSTD_compressBlock_fast_extDict(ZSTD_CCtx* ctx,
+                         const void* src, size_t srcSize)
+{
+    U32 const mls = ctx->params.cParams.searchLength;
+    switch(mls)
+    {
+    default:
+    case 4 :
+        ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 4); return;
+    case 5 :
+        ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 5); return;
+    case 6 :
+        ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 6); return;
+    case 7 :
+        ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 7); return;
+    }
+}
+
+
+/*-*************************************
+*  Double Fast
+***************************************/
+static void ZSTD_fillDoubleHashTable (ZSTD_CCtx* cctx, const void* end, const U32 mls)
+{
+    U32* const hashLarge = cctx->hashTable;
+    U32  const hBitsL = cctx->params.cParams.hashLog;
+    U32* const hashSmall = cctx->chainTable;
+    U32  const hBitsS = cctx->params.cParams.chainLog;
+    const BYTE* const base = cctx->base;
+    const BYTE* ip = base + cctx->nextToUpdate;
+    const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
+    const size_t fastHashFillStep = 3;
+
+    while(ip <= iend) {
+        hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base);
+        hashLarge[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base);
+        ip += fastHashFillStep;
+    }
+}
+
+
+FORCE_INLINE
+void ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx,
+                                 const void* src, size_t srcSize,
+                                 const U32 mls)
+{
+    U32* const hashLong = cctx->hashTable;
+    const U32 hBitsL = cctx->params.cParams.hashLog;
+    U32* const hashSmall = cctx->chainTable;
+    const U32 hBitsS = cctx->params.cParams.chainLog;
+    seqStore_t* seqStorePtr = &(cctx->seqStore);
+    const BYTE* const base = cctx->base;
+    const BYTE* const istart = (const BYTE*)src;
+    const BYTE* ip = istart;
+    const BYTE* anchor = istart;
+    const U32 lowestIndex = cctx->dictLimit;
+    const BYTE* const lowest = base + lowestIndex;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* const ilimit = iend - HASH_READ_SIZE;
+    U32 offset_1=cctx->rep[0], offset_2=cctx->rep[1];
+    U32 offsetSaved = 0;
+
+    /* init */
+    ip += (ip==lowest);
+    {   U32 const maxRep = (U32)(ip-lowest);
+        if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
+        if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
+    }
+
+    /* Main Search Loop */
+    while (ip < ilimit) {   /* < instead of <=, because repcode check at (ip+1) */
+        size_t mLength;
+        size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
+        size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
+        U32 const current = (U32)(ip-base);
+        U32 const matchIndexL = hashLong[h2];
+        U32 const matchIndexS = hashSmall[h];
+        const BYTE* matchLong = base + matchIndexL;
+        const BYTE* match = base + matchIndexS;
+        hashLong[h2] = hashSmall[h] = current;   /* update hash tables */
+
+        if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) { /* note : by construction, offset_1 <= current */
+            mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
+            ip++;
+            ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
+        } else {
+            U32 offset;
+            if ( (matchIndexL > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip)) ) {
+                mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
+                offset = (U32)(ip-matchLong);
+                while (((ip>anchor) & (matchLong>lowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
+            } else if ( (matchIndexS > lowestIndex) && (MEM_read32(match) == MEM_read32(ip)) ) {
+                size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
+                U32 const matchIndex3 = hashLong[h3];
+                const BYTE* match3 = base + matchIndex3;
+                hashLong[h3] = current + 1;
+                if ( (matchIndex3 > lowestIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
+                    mLength = ZSTD_count(ip+9, match3+8, iend) + 8;
+                    ip++;
+                    offset = (U32)(ip-match3);
+                    while (((ip>anchor) & (match3>lowest)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
+                } else {
+                    mLength = ZSTD_count(ip+4, match+4, iend) + 4;
+                    offset = (U32)(ip-match);
+                    while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
+                }
+            } else {
+                ip += ((ip-anchor) >> g_searchStrength) + 1;
+                continue;
+            }
+
+            offset_2 = offset_1;
+            offset_1 = offset;
+
+            ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+        }
+
+        /* match found */
+        ip += mLength;
+        anchor = ip;
+
+        if (ip <= ilimit) {
+            /* Fill Table */
+            hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] =
+                hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2;  /* here because current+2 could be > iend-8 */
+            hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] =
+                hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
+
+            /* check immediate repcode */
+            while ( (ip <= ilimit)
+                 && ( (offset_2>0)
+                 & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
+                /* store sequence */
+                size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
+                { U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
+                hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
+                hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
+                ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
+                ip += rLength;
+                anchor = ip;
+                continue;   /* faster when present ... (?) */
+    }   }   }
+
+    /* save reps for next block */
+    cctx->savedRep[0] = offset_1 ? offset_1 : offsetSaved;
+    cctx->savedRep[1] = offset_2 ? offset_2 : offsetSaved;
+
+    /* Last Literals */
+    {   size_t const lastLLSize = iend - anchor;
+        memcpy(seqStorePtr->lit, anchor, lastLLSize);
+        seqStorePtr->lit += lastLLSize;
+    }
+}
+
+
+static void ZSTD_compressBlock_doubleFast(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    const U32 mls = ctx->params.cParams.searchLength;
+    switch(mls)
+    {
+    default:
+    case 4 :
+        ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 4); return;
+    case 5 :
+        ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 5); return;
+    case 6 :
+        ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 6); return;
+    case 7 :
+        ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 7); return;
+    }
+}
+
+
+static void ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
+                                 const void* src, size_t srcSize,
+                                 const U32 mls)
+{
+    U32* const hashLong = ctx->hashTable;
+    U32  const hBitsL = ctx->params.cParams.hashLog;
+    U32* const hashSmall = ctx->chainTable;
+    U32  const hBitsS = ctx->params.cParams.chainLog;
+    seqStore_t* seqStorePtr = &(ctx->seqStore);
+    const BYTE* const base = ctx->base;
+    const BYTE* const dictBase = ctx->dictBase;
+    const BYTE* const istart = (const BYTE*)src;
+    const BYTE* ip = istart;
+    const BYTE* anchor = istart;
+    const U32   lowestIndex = ctx->lowLimit;
+    const BYTE* const dictStart = dictBase + lowestIndex;
+    const U32   dictLimit = ctx->dictLimit;
+    const BYTE* const lowPrefixPtr = base + dictLimit;
+    const BYTE* const dictEnd = dictBase + dictLimit;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* const ilimit = iend - 8;
+    U32 offset_1=ctx->rep[0], offset_2=ctx->rep[1];
+
+    /* Search Loop */
+    while (ip < ilimit) {  /* < instead of <=, because (ip+1) */
+        const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
+        const U32 matchIndex = hashSmall[hSmall];
+        const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base;
+        const BYTE* match = matchBase + matchIndex;
+
+        const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
+        const U32 matchLongIndex = hashLong[hLong];
+        const BYTE* matchLongBase = matchLongIndex < dictLimit ? dictBase : base;
+        const BYTE* matchLong = matchLongBase + matchLongIndex;
+
+        const U32 current = (U32)(ip-base);
+        const U32 repIndex = current + 1 - offset_1;   /* offset_1 expected <= current +1 */
+        const BYTE* repBase = repIndex < dictLimit ? dictBase : base;
+        const BYTE* repMatch = repBase + repIndex;
+        size_t mLength;
+        hashSmall[hSmall] = hashLong[hLong] = current;   /* update hash table */
+
+        if ( (((U32)((dictLimit-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex))
+           && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
+            const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
+            mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, lowPrefixPtr) + 4;
+            ip++;
+            ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
+        } else {
+            if ((matchLongIndex > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
+                const BYTE* matchEnd = matchLongIndex < dictLimit ? dictEnd : iend;
+                const BYTE* lowMatchPtr = matchLongIndex < dictLimit ? dictStart : lowPrefixPtr;
+                U32 offset;
+                mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, lowPrefixPtr) + 8;
+                offset = current - matchLongIndex;
+                while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; }   /* catch up */
+                offset_2 = offset_1;
+                offset_1 = offset;
+                ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+
+            } else if ((matchIndex > lowestIndex) && (MEM_read32(match) == MEM_read32(ip))) {
+                size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
+                U32 const matchIndex3 = hashLong[h3];
+                const BYTE* const match3Base = matchIndex3 < dictLimit ? dictBase : base;
+                const BYTE* match3 = match3Base + matchIndex3;
+                U32 offset;
+                hashLong[h3] = current + 1;
+                if ( (matchIndex3 > lowestIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
+                    const BYTE* matchEnd = matchIndex3 < dictLimit ? dictEnd : iend;
+                    const BYTE* lowMatchPtr = matchIndex3 < dictLimit ? dictStart : lowPrefixPtr;
+                    mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, lowPrefixPtr) + 8;
+                    ip++;
+                    offset = current+1 - matchIndex3;
+                    while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
+                } else {
+                    const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend;
+                    const BYTE* lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
+                    mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, lowPrefixPtr) + 4;
+                    offset = current - matchIndex;
+                    while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; }   /* catch up */
+                }
+                offset_2 = offset_1;
+                offset_1 = offset;
+                ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
+
+            } else {
+                ip += ((ip-anchor) >> g_searchStrength) + 1;
+                continue;
+        }   }
+
+        /* found a match : store it */
+        ip += mLength;
+        anchor = ip;
+
+        if (ip <= ilimit) {
+            /* Fill Table */
+			hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2;
+			hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] = current+2;
+            hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
+            hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
+            /* check immediate repcode */
+            while (ip <= ilimit) {
+                U32 const current2 = (U32)(ip-base);
+                U32 const repIndex2 = current2 - offset_2;
+                const BYTE* repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
+                if ( (((U32)((dictLimit-1) - repIndex2) >= 3) & (repIndex2 > lowestIndex))  /* intentional overflow */
+                   && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
+                    const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
+                    size_t const repLength2 = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch2+EQUAL_READ32, iend, repEnd2, lowPrefixPtr) + EQUAL_READ32;
+                    U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset;   /* swap offset_2 <=> offset_1 */
+                    ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
+                    hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
+                    hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
+                    ip += repLength2;
+                    anchor = ip;
+                    continue;
+                }
+                break;
+    }   }   }
+
+    /* save reps for next block */
+    ctx->savedRep[0] = offset_1; ctx->savedRep[1] = offset_2;
+
+    /* Last Literals */
+    {   size_t const lastLLSize = iend - anchor;
+        memcpy(seqStorePtr->lit, anchor, lastLLSize);
+        seqStorePtr->lit += lastLLSize;
+    }
+}
+
+
+static void ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx* ctx,
+                         const void* src, size_t srcSize)
+{
+    U32 const mls = ctx->params.cParams.searchLength;
+    switch(mls)
+    {
+    default:
+    case 4 :
+        ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 4); return;
+    case 5 :
+        ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 5); return;
+    case 6 :
+        ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 6); return;
+    case 7 :
+        ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 7); return;
+    }
+}
+
+
+/*-*************************************
+*  Binary Tree search
+***************************************/
+/** ZSTD_insertBt1() : add one or multiple positions to tree.
+*   ip : assumed <= iend-8 .
+*   @return : nb of positions added */
+static U32 ZSTD_insertBt1(ZSTD_CCtx* zc, const BYTE* const ip, const U32 mls, const BYTE* const iend, U32 nbCompares,
+                          U32 extDict)
+{
+    U32*   const hashTable = zc->hashTable;
+    U32    const hashLog = zc->params.cParams.hashLog;
+    size_t const h  = ZSTD_hashPtr(ip, hashLog, mls);
+    U32*   const bt = zc->chainTable;
+    U32    const btLog  = zc->params.cParams.chainLog - 1;
+    U32    const btMask = (1 << btLog) - 1;
+    U32 matchIndex = hashTable[h];
+    size_t commonLengthSmaller=0, commonLengthLarger=0;
+    const BYTE* const base = zc->base;
+    const BYTE* const dictBase = zc->dictBase;
+    const U32 dictLimit = zc->dictLimit;
+    const BYTE* const dictEnd = dictBase + dictLimit;
+    const BYTE* const prefixStart = base + dictLimit;
+    const BYTE* match;
+    const U32 current = (U32)(ip-base);
+    const U32 btLow = btMask >= current ? 0 : current - btMask;
+    U32* smallerPtr = bt + 2*(current&btMask);
+    U32* largerPtr  = smallerPtr + 1;
+    U32 dummy32;   /* to be nullified at the end */
+    U32 const windowLow = zc->lowLimit;
+    U32 matchEndIdx = current+8;
+    size_t bestLength = 8;
+#ifdef ZSTD_C_PREDICT
+    U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0);
+    U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1);
+    predictedSmall += (predictedSmall>0);
+    predictedLarge += (predictedLarge>0);
+#endif /* ZSTD_C_PREDICT */
+
+    hashTable[h] = current;   /* Update Hash Table */
+
+    while (nbCompares-- && (matchIndex > windowLow)) {
+        U32* nextPtr = bt + 2*(matchIndex & btMask);
+        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
+#ifdef ZSTD_C_PREDICT   /* note : can create issues when hlog small <= 11 */
+        const U32* predictPtr = bt + 2*((matchIndex-1) & btMask);   /* written this way, as bt is a roll buffer */
+        if (matchIndex == predictedSmall) {
+            /* no need to check length, result known */
+            *smallerPtr = matchIndex;
+            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
+            smallerPtr = nextPtr+1;               /* new "smaller" => larger of match */
+            matchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
+            predictedSmall = predictPtr[1] + (predictPtr[1]>0);
+            continue;
+        }
+        if (matchIndex == predictedLarge) {
+            *largerPtr = matchIndex;
+            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
+            largerPtr = nextPtr;
+            matchIndex = nextPtr[0];
+            predictedLarge = predictPtr[0] + (predictPtr[0]>0);
+            continue;
+        }
+#endif
+        if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
+            match = base + matchIndex;
+            if (match[matchLength] == ip[matchLength])
+                matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iend) +1;
+        } else {
+            match = dictBase + matchIndex;
+            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+            if (matchIndex+matchLength >= dictLimit)
+				match = base + matchIndex;   /* to prepare for next usage of match[matchLength] */
+        }
+
+        if (matchLength > bestLength) {
+            bestLength = matchLength;
+            if (matchLength > matchEndIdx - matchIndex)
+                matchEndIdx = matchIndex + (U32)matchLength;
+        }
+
+        if (ip+matchLength == iend)   /* equal : no way to know if inf or sup */
+            break;   /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt the tree */
+
+        if (match[matchLength] < ip[matchLength]) {  /* necessarily within correct buffer */
+            /* match is smaller than current */
+            *smallerPtr = matchIndex;             /* update smaller idx */
+            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
+            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
+            smallerPtr = nextPtr+1;               /* new "smaller" => larger of match */
+            matchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
+        } else {
+            /* match is larger than current */
+            *largerPtr = matchIndex;
+            commonLengthLarger = matchLength;
+            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
+            largerPtr = nextPtr;
+            matchIndex = nextPtr[0];
+    }   }
+
+    *smallerPtr = *largerPtr = 0;
+    if (bestLength > 384) return MIN(192, (U32)(bestLength - 384));   /* speed optimization */
+    if (matchEndIdx > current + 8) return matchEndIdx - current - 8;
+    return 1;
+}
+
+
+static size_t ZSTD_insertBtAndFindBestMatch (
+                        ZSTD_CCtx* zc,
+                        const BYTE* const ip, const BYTE* const iend,
+                        size_t* offsetPtr,
+                        U32 nbCompares, const U32 mls,
+                        U32 extDict)
+{
+    U32*   const hashTable = zc->hashTable;
+    U32    const hashLog = zc->params.cParams.hashLog;
+    size_t const h  = ZSTD_hashPtr(ip, hashLog, mls);
+    U32*   const bt = zc->chainTable;
+    U32    const btLog  = zc->params.cParams.chainLog - 1;
+    U32    const btMask = (1 << btLog) - 1;
+    U32 matchIndex  = hashTable[h];
+    size_t commonLengthSmaller=0, commonLengthLarger=0;
+    const BYTE* const base = zc->base;
+    const BYTE* const dictBase = zc->dictBase;
+    const U32 dictLimit = zc->dictLimit;
+    const BYTE* const dictEnd = dictBase + dictLimit;
+    const BYTE* const prefixStart = base + dictLimit;
+    const U32 current = (U32)(ip-base);
+    const U32 btLow = btMask >= current ? 0 : current - btMask;
+    const U32 windowLow = zc->lowLimit;
+    U32* smallerPtr = bt + 2*(current&btMask);
+    U32* largerPtr  = bt + 2*(current&btMask) + 1;
+    U32 matchEndIdx = current+8;
+    U32 dummy32;   /* to be nullified at the end */
+    size_t bestLength = 0;
+
+    hashTable[h] = current;   /* Update Hash Table */
+
+    while (nbCompares-- && (matchIndex > windowLow)) {
+        U32* nextPtr = bt + 2*(matchIndex & btMask);
+        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
+        const BYTE* match;
+
+        if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
+            match = base + matchIndex;
+            if (match[matchLength] == ip[matchLength])
+                matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iend) +1;
+        } else {
+            match = dictBase + matchIndex;
+            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
+            if (matchIndex+matchLength >= dictLimit)
+				match = base + matchIndex;   /* to prepare for next usage of match[matchLength] */
+        }
+
+        if (matchLength > bestLength) {
+            if (matchLength > matchEndIdx - matchIndex)
+                matchEndIdx = matchIndex + (U32)matchLength;
+            if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(current-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
+                bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + current - matchIndex;
+            if (ip+matchLength == iend)   /* equal : no way to know if inf or sup */
+                break;   /* drop, to guarantee consistency (miss a little bit of compression) */
+        }
+
+        if (match[matchLength] < ip[matchLength]) {
+            /* match is smaller than current */
+            *smallerPtr = matchIndex;             /* update smaller idx */
+            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
+            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
+            smallerPtr = nextPtr+1;               /* new "smaller" => larger of match */
+            matchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
+        } else {
+            /* match is larger than current */
+            *largerPtr = matchIndex;
+            commonLengthLarger = matchLength;
+            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
+            largerPtr = nextPtr;
+            matchIndex = nextPtr[0];
+    }   }
+
+    *smallerPtr = *largerPtr = 0;
+
+    zc->nextToUpdate = (matchEndIdx > current + 8) ? matchEndIdx - 8 : current+1;
+    return bestLength;
+}
+
+
+static void ZSTD_updateTree(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls)
+{
+    const BYTE* const base = zc->base;
+    const U32 target = (U32)(ip - base);
+    U32 idx = zc->nextToUpdate;
+
+    while(idx < target)
+        idx += ZSTD_insertBt1(zc, base+idx, mls, iend, nbCompares, 0);
+}
+
+/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
+static size_t ZSTD_BtFindBestMatch (
+                        ZSTD_CCtx* zc,
+                        const BYTE* const ip, const BYTE* const iLimit,
+                        size_t* offsetPtr,
+                        const U32 maxNbAttempts, const U32 mls)
+{
+    if (ip < zc->base + zc->nextToUpdate) return 0;   /* skipped area */
+    ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
+    return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 0);
+}
+
+
+static size_t ZSTD_BtFindBestMatch_selectMLS (
+                        ZSTD_CCtx* zc,   /* Index table will be updated */
+                        const BYTE* ip, const BYTE* const iLimit,
+                        size_t* offsetPtr,
+                        const U32 maxNbAttempts, const U32 matchLengthSearch)
+{
+    switch(matchLengthSearch)
+    {
+    default :
+    case 4 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
+    case 5 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
+    case 6 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
+    }
+}
+
+
+static void ZSTD_updateTree_extDict(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls)
+{
+    const BYTE* const base = zc->base;
+    const U32 target = (U32)(ip - base);
+    U32 idx = zc->nextToUpdate;
+
+    while (idx < target) idx += ZSTD_insertBt1(zc, base+idx, mls, iend, nbCompares, 1);
+}
+
+
+/** Tree updater, providing best match */
+static size_t ZSTD_BtFindBestMatch_extDict (
+                        ZSTD_CCtx* zc,
+                        const BYTE* const ip, const BYTE* const iLimit,
+                        size_t* offsetPtr,
+                        const U32 maxNbAttempts, const U32 mls)
+{
+    if (ip < zc->base + zc->nextToUpdate) return 0;   /* skipped area */
+    ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
+    return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 1);
+}
+
+
+static size_t ZSTD_BtFindBestMatch_selectMLS_extDict (
+                        ZSTD_CCtx* zc,   /* Index table will be updated */
+                        const BYTE* ip, const BYTE* const iLimit,
+                        size_t* offsetPtr,
+                        const U32 maxNbAttempts, const U32 matchLengthSearch)
+{
+    switch(matchLengthSearch)
+    {
+    default :
+    case 4 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
+    case 5 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
+    case 6 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
+    }
+}
+
+
+
+/* *********************************
+*  Hash Chain
+***********************************/
+#define NEXT_IN_CHAIN(d, mask)   chainTable[(d) & mask]
+
+/* Update chains up to ip (excluded)
+   Assumption : always within prefix (ie. not within extDict) */
+FORCE_INLINE
+U32 ZSTD_insertAndFindFirstIndex (ZSTD_CCtx* zc, const BYTE* ip, U32 mls)
+{
+    U32* const hashTable  = zc->hashTable;
+    const U32 hashLog = zc->params.cParams.hashLog;
+    U32* const chainTable = zc->chainTable;
+    const U32 chainMask = (1 << zc->params.cParams.chainLog) - 1;
+    const BYTE* const base = zc->base;
+    const U32 target = (U32)(ip - base);
+    U32 idx = zc->nextToUpdate;
+
+    while(idx < target) { /* catch up */
+        size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
+        NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
+        hashTable[h] = idx;
+        idx++;
+    }
+
+    zc->nextToUpdate = target;
+    return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
+}
+
+
+
+FORCE_INLINE /* inlining is important to hardwire a hot branch (template emulation) */
+size_t ZSTD_HcFindBestMatch_generic (
+                        ZSTD_CCtx* zc,   /* Index table will be updated */
+                        const BYTE* const ip, const BYTE* const iLimit,
+                        size_t* offsetPtr,
+                        const U32 maxNbAttempts, const U32 mls, const U32 extDict)
+{
+    U32* const chainTable = zc->chainTable;
+    const U32 chainSize = (1 << zc->params.cParams.chainLog);
+    const U32 chainMask = chainSize-1;
+    const BYTE* const base = zc->base;
+    const BYTE* const dictBase = zc->dictBase;
+    const U32 dictLimit = zc->dictLimit;
+    const BYTE* const prefixStart = base + dictLimit;
+    const BYTE* const dictEnd = dictBase + dictLimit;
+    const U32 lowLimit = zc->lowLimit;
+    const U32 current = (U32)(ip-base);
+    const U32 minChain = current > chainSize ? current - chainSize : 0;
+    int nbAttempts=maxNbAttempts;
+    size_t ml=EQUAL_READ32-1;
+
+    /* HC4 match finder */
+    U32 matchIndex = ZSTD_insertAndFindFirstIndex (zc, ip, mls);
+
+    for ( ; (matchIndex>lowLimit) & (nbAttempts>0) ; nbAttempts--) {
+        const BYTE* match;
+        size_t currentMl=0;
+        if ((!extDict) || matchIndex >= dictLimit) {
+            match = base + matchIndex;
+            if (match[ml] == ip[ml])   /* potentially better */
+                currentMl = ZSTD_count(ip, match, iLimit);
+        } else {
+            match = dictBase + matchIndex;
+            if (MEM_read32(match) == MEM_read32(ip))   /* assumption : matchIndex <= dictLimit-4 (by table construction) */
+                currentMl = ZSTD_count_2segments(ip+EQUAL_READ32, match+EQUAL_READ32, iLimit, dictEnd, prefixStart) + EQUAL_READ32;
+        }
+
+        /* save best solution */
+        if (currentMl > ml) { ml = currentMl; *offsetPtr = current - matchIndex + ZSTD_REP_MOVE; if (ip+currentMl == iLimit) break; /* best possible, and avoid read overflow*/ }
+
+        if (matchIndex <= minChain) break;
+        matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
+    }
+
+    return ml;
+}
+
+
+FORCE_INLINE size_t ZSTD_HcFindBestMatch_selectMLS (
+                        ZSTD_CCtx* zc,
+                        const BYTE* ip, const BYTE* const iLimit,
+                        size_t* offsetPtr,
+                        const U32 maxNbAttempts, const U32 matchLengthSearch)
+{
+    switch(matchLengthSearch)
+    {
+    default :
+    case 4 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 0);
+    case 5 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 0);
+    case 6 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 0);
+    }
+}
+
+
+FORCE_INLINE size_t ZSTD_HcFindBestMatch_extDict_selectMLS (
+                        ZSTD_CCtx* zc,
+                        const BYTE* ip, const BYTE* const iLimit,
+                        size_t* offsetPtr,
+                        const U32 maxNbAttempts, const U32 matchLengthSearch)
+{
+    switch(matchLengthSearch)
+    {
+    default :
+    case 4 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 1);
+    case 5 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 1);
+    case 6 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 1);
+    }
+}
+
+
+/* *******************************
+*  Common parser - lazy strategy
+*********************************/
+FORCE_INLINE
+void ZSTD_compressBlock_lazy_generic(ZSTD_CCtx* ctx,
+                                     const void* src, size_t srcSize,
+                                     const U32 searchMethod, const U32 depth)
+{
+    seqStore_t* seqStorePtr = &(ctx->seqStore);
+    const BYTE* const istart = (const BYTE*)src;
+    const BYTE* ip = istart;
+    const BYTE* anchor = istart;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* const ilimit = iend - 8;
+    const BYTE* const base = ctx->base + ctx->dictLimit;
+
+    U32 const maxSearches = 1 << ctx->params.cParams.searchLog;
+    U32 const mls = ctx->params.cParams.searchLength;
+
+    typedef size_t (*searchMax_f)(ZSTD_CCtx* zc, const BYTE* ip, const BYTE* iLimit,
+                        size_t* offsetPtr,
+                        U32 maxNbAttempts, U32 matchLengthSearch);
+    searchMax_f const searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS;
+    U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1], savedOffset=0;
+
+    /* init */
+    ip += (ip==base);
+    ctx->nextToUpdate3 = ctx->nextToUpdate;
+    {   U32 const maxRep = (U32)(ip-base);
+        if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
+        if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0;
+    }
+
+    /* Match Loop */
+    while (ip < ilimit) {
+        size_t matchLength=0;
+        size_t offset=0;
+        const BYTE* start=ip+1;
+
+        /* check repCode */
+        if ((offset_1>0) & (MEM_read32(ip+1) == MEM_read32(ip+1 - offset_1))) {
+            /* repcode : we take it */
+            matchLength = ZSTD_count(ip+1+EQUAL_READ32, ip+1+EQUAL_READ32-offset_1, iend) + EQUAL_READ32;
+            if (depth==0) goto _storeSequence;
+        }
+
+        /* first search (depth 0) */
+        {   size_t offsetFound = 99999999;
+            size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
+            if (ml2 > matchLength)
+                matchLength = ml2, start = ip, offset=offsetFound;
+        }
+
+        if (matchLength < EQUAL_READ32) {
+            ip += ((ip-anchor) >> g_searchStrength) + 1;   /* jump faster over incompressible sections */
+            continue;
+        }
+
+        /* let's try to find a better solution */
+        if (depth>=1)
+        while (ip<ilimit) {
+            ip ++;
+            if ((offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
+                size_t const mlRep = ZSTD_count(ip+EQUAL_READ32, ip+EQUAL_READ32-offset_1, iend) + EQUAL_READ32;
+                int const gain2 = (int)(mlRep * 3);
+                int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+                if ((mlRep >= EQUAL_READ32) && (gain2 > gain1))
+                    matchLength = mlRep, offset = 0, start = ip;
+            }
+            {   size_t offset2=99999999;
+                size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
+                int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1));   /* raw approx */
+                int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
+                if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
+                    matchLength = ml2, offset = offset2, start = ip;
+                    continue;   /* search a better one */
+            }   }
+
+            /* let's find an even better one */
+            if ((depth==2) && (ip<ilimit)) {
+                ip ++;
+                if ((offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
+                    size_t const ml2 = ZSTD_count(ip+EQUAL_READ32, ip+EQUAL_READ32-offset_1, iend) + EQUAL_READ32;
+                    int const gain2 = (int)(ml2 * 4);
+                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+                    if ((ml2 >= EQUAL_READ32) && (gain2 > gain1))
+                        matchLength = ml2, offset = 0, start = ip;
+                }
+                {   size_t offset2=99999999;
+                    size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
+                    int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1));   /* raw approx */
+                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
+                    if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
+                        matchLength = ml2, offset = offset2, start = ip;
+                        continue;
+            }   }   }
+            break;  /* nothing found : store previous solution */
+        }
+
+        /* catch up */
+        if (offset) {
+            while ((start>anchor) && (start>base+offset-ZSTD_REP_MOVE) && (start[-1] == start[-1-offset+ZSTD_REP_MOVE]))   /* only search for offset within prefix */
+                { start--; matchLength++; }
+            offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
+        }
+
+        /* store sequence */
+_storeSequence:
+        {   size_t const litLength = start - anchor;
+            ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength-MINMATCH);
+            anchor = ip = start + matchLength;
+        }
+
+        /* check immediate repcode */
+        while ( (ip <= ilimit)
+             && ((offset_2>0)
+             & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
+            /* store sequence */
+            matchLength = ZSTD_count(ip+EQUAL_READ32, ip+EQUAL_READ32-offset_2, iend) + EQUAL_READ32;
+            offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */
+            ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength-MINMATCH);
+            ip += matchLength;
+            anchor = ip;
+            continue;   /* faster when present ... (?) */
+    }   }
+
+    /* Save reps for next block */
+    ctx->savedRep[0] = offset_1 ? offset_1 : savedOffset;
+    ctx->savedRep[1] = offset_2 ? offset_2 : savedOffset;
+
+    /* Last Literals */
+    {   size_t const lastLLSize = iend - anchor;
+        memcpy(seqStorePtr->lit, anchor, lastLLSize);
+        seqStorePtr->lit += lastLLSize;
+    }
+}
+
+
+static void ZSTD_compressBlock_btlazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 1, 2);
+}
+
+static void ZSTD_compressBlock_lazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 2);
+}
+
+static void ZSTD_compressBlock_lazy(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 1);
+}
+
+static void ZSTD_compressBlock_greedy(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 0);
+}
+
+
+FORCE_INLINE
+void ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx* ctx,
+                                     const void* src, size_t srcSize,
+                                     const U32 searchMethod, const U32 depth)
+{
+    seqStore_t* seqStorePtr = &(ctx->seqStore);
+    const BYTE* const istart = (const BYTE*)src;
+    const BYTE* ip = istart;
+    const BYTE* anchor = istart;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* const ilimit = iend - 8;
+    const BYTE* const base = ctx->base;
+    const U32 dictLimit = ctx->dictLimit;
+    const U32 lowestIndex = ctx->lowLimit;
+    const BYTE* const prefixStart = base + dictLimit;
+    const BYTE* const dictBase = ctx->dictBase;
+    const BYTE* const dictEnd  = dictBase + dictLimit;
+    const BYTE* const dictStart  = dictBase + ctx->lowLimit;
+
+    const U32 maxSearches = 1 << ctx->params.cParams.searchLog;
+    const U32 mls = ctx->params.cParams.searchLength;
+
+    typedef size_t (*searchMax_f)(ZSTD_CCtx* zc, const BYTE* ip, const BYTE* iLimit,
+                        size_t* offsetPtr,
+                        U32 maxNbAttempts, U32 matchLengthSearch);
+    searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS_extDict : ZSTD_HcFindBestMatch_extDict_selectMLS;
+
+    U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1];
+
+    /* init */
+    ctx->nextToUpdate3 = ctx->nextToUpdate;
+    ip += (ip == prefixStart);
+
+    /* Match Loop */
+    while (ip < ilimit) {
+        size_t matchLength=0;
+        size_t offset=0;
+        const BYTE* start=ip+1;
+        U32 current = (U32)(ip-base);
+
+        /* check repCode */
+        {   const U32 repIndex = (U32)(current+1 - offset_1);
+            const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+            const BYTE* const repMatch = repBase + repIndex;
+            if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex))   /* intentional overflow */
+            if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
+                /* repcode detected we should take it */
+                const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+                matchLength = ZSTD_count_2segments(ip+1+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
+                if (depth==0) goto _storeSequence;
+        }   }
+
+        /* first search (depth 0) */
+        {   size_t offsetFound = 99999999;
+            size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
+            if (ml2 > matchLength)
+                matchLength = ml2, start = ip, offset=offsetFound;
+        }
+
+         if (matchLength < EQUAL_READ32) {
+            ip += ((ip-anchor) >> g_searchStrength) + 1;   /* jump faster over incompressible sections */
+            continue;
+        }
+
+        /* let's try to find a better solution */
+        if (depth>=1)
+        while (ip<ilimit) {
+            ip ++;
+            current++;
+            /* check repCode */
+            if (offset) {
+                const U32 repIndex = (U32)(current - offset_1);
+                const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+                const BYTE* const repMatch = repBase + repIndex;
+                if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex))  /* intentional overflow */
+                if (MEM_read32(ip) == MEM_read32(repMatch)) {
+                    /* repcode detected */
+                    const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+                    size_t const repLength = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
+                    int const gain2 = (int)(repLength * 3);
+                    int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
+                    if ((repLength >= EQUAL_READ32) && (gain2 > gain1))
+                        matchLength = repLength, offset = 0, start = ip;
+            }   }
+
+            /* search match, depth 1 */
+            {   size_t offset2=99999999;
+                size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
+                int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1));   /* raw approx */
+                int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
+                if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
+                    matchLength = ml2, offset = offset2, start = ip;
+                    continue;   /* search a better one */
+            }   }
+
+            /* let's find an even better one */
+            if ((depth==2) && (ip<ilimit)) {
+                ip ++;
+                current++;
+                /* check repCode */
+                if (offset) {
+                    const U32 repIndex = (U32)(current - offset_1);
+                    const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+                    const BYTE* const repMatch = repBase + repIndex;
+                    if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex))  /* intentional overflow */
+                    if (MEM_read32(ip) == MEM_read32(repMatch)) {
+                        /* repcode detected */
+                        const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+                        size_t repLength = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
+                        int gain2 = (int)(repLength * 4);
+                        int gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
+                        if ((repLength >= EQUAL_READ32) && (gain2 > gain1))
+                            matchLength = repLength, offset = 0, start = ip;
+                }   }
+
+                /* search match, depth 2 */
+                {   size_t offset2=99999999;
+                    size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
+                    int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1));   /* raw approx */
+                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
+                    if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
+                        matchLength = ml2, offset = offset2, start = ip;
+                        continue;
+            }   }   }
+            break;  /* nothing found : store previous solution */
+        }
+
+        /* catch up */
+        if (offset) {
+            U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE));
+            const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
+            const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
+            while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; }  /* catch up */
+            offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
+        }
+
+        /* store sequence */
+_storeSequence:
+        {   size_t const litLength = start - anchor;
+            ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength-MINMATCH);
+            anchor = ip = start + matchLength;
+        }
+
+        /* check immediate repcode */
+        while (ip <= ilimit) {
+            const U32 repIndex = (U32)((ip-base) - offset_2);
+            const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+            const BYTE* const repMatch = repBase + repIndex;
+            if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex))  /* intentional overflow */
+            if (MEM_read32(ip) == MEM_read32(repMatch)) {
+                /* repcode detected we should take it */
+                const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+                matchLength = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
+                offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset;   /* swap offset history */
+                ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength-MINMATCH);
+                ip += matchLength;
+                anchor = ip;
+                continue;   /* faster when present ... (?) */
+            }
+            break;
+    }   }
+
+    /* Save reps for next block */
+    ctx->savedRep[0] = offset_1; ctx->savedRep[1] = offset_2;
+
+    /* Last Literals */
+    {   size_t const lastLLSize = iend - anchor;
+        memcpy(seqStorePtr->lit, anchor, lastLLSize);
+        seqStorePtr->lit += lastLLSize;
+    }
+}
+
+
+void ZSTD_compressBlock_greedy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 0);
+}
+
+static void ZSTD_compressBlock_lazy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 1);
+}
+
+static void ZSTD_compressBlock_lazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 2);
+}
+
+static void ZSTD_compressBlock_btlazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+    ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 1, 2);
+}
+
+
+/* The optimal parser */
+#include "zstd_opt.h"
+
+static void ZSTD_compressBlock_btopt(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+#ifdef ZSTD_OPT_H_91842398743
+    ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 0);
+#else
+    (void)ctx; (void)src; (void)srcSize;
+    return;
+#endif
+}
+
+static void ZSTD_compressBlock_btopt2(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+#ifdef ZSTD_OPT_H_91842398743
+    ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 1);
+#else
+    (void)ctx; (void)src; (void)srcSize;
+    return;
+#endif
+}
+
+static void ZSTD_compressBlock_btopt_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+#ifdef ZSTD_OPT_H_91842398743
+    ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 0);
+#else
+    (void)ctx; (void)src; (void)srcSize;
+    return;
+#endif
+}
+
+static void ZSTD_compressBlock_btopt2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
+{
+#ifdef ZSTD_OPT_H_91842398743
+    ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 1);
+#else
+    (void)ctx; (void)src; (void)srcSize;
+    return;
+#endif
+}
+
+
+typedef void (*ZSTD_blockCompressor) (ZSTD_CCtx* ctx, const void* src, size_t srcSize);
+
+static ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict)
+{
+    static const ZSTD_blockCompressor blockCompressor[2][8] = {
+        { ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy, ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2, ZSTD_compressBlock_btlazy2, ZSTD_compressBlock_btopt, ZSTD_compressBlock_btopt2 },
+        { ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict, ZSTD_compressBlock_lazy_extDict,ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict, ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btopt2_extDict }
+    };
+
+    return blockCompressor[extDict][(U32)strat];
+}
+
+
+static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->params.cParams.strategy, zc->lowLimit < zc->dictLimit);
+    const BYTE* const base = zc->base;
+    const BYTE* const istart = (const BYTE*)src;
+    const U32 current = (U32)(istart-base);
+    if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) return 0;   /* don't even attempt compression below a certain srcSize */
+    ZSTD_resetSeqStore(&(zc->seqStore));
+    if (current > zc->nextToUpdate + 384)
+        zc->nextToUpdate = current - MIN(192, (U32)(current - zc->nextToUpdate - 384));   /* update tree not updated after finding very long rep matches */
+    blockCompressor(zc, src, srcSize);
+    return ZSTD_compressSequences(zc, dst, dstCapacity, srcSize);
+}
+
+
+/*! ZSTD_compress_generic() :
+*   Compress a chunk of data into one or multiple blocks.
+*   All blocks will be terminated, all input will be consumed.
+*   Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
+*   Frame is supposed already started (header already produced)
+*   @return : compressed size, or an error code
+*/
+static size_t ZSTD_compress_generic (ZSTD_CCtx* cctx,
+                                     void* dst, size_t dstCapacity,
+                               const void* src, size_t srcSize,
+                                     U32 lastFrameChunk)
+{
+    size_t blockSize = cctx->blockSize;
+    size_t remaining = srcSize;
+    const BYTE* ip = (const BYTE*)src;
+    BYTE* const ostart = (BYTE*)dst;
+    BYTE* op = ostart;
+    U32 const maxDist = 1 << cctx->params.cParams.windowLog;
+
+    if (cctx->params.fParams.checksumFlag && srcSize)
+        XXH64_update(&cctx->xxhState, src, srcSize);
+
+    while (remaining) {
+        U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
+        size_t cSize;
+
+        if (dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE) return ERROR(dstSize_tooSmall);   /* not enough space to store compressed block */
+        if (remaining < blockSize) blockSize = remaining;
+
+        /* preemptive overflow correction */
+        if (cctx->lowLimit > (1<<30)) {
+            U32 const btplus = (cctx->params.cParams.strategy == ZSTD_btlazy2) | (cctx->params.cParams.strategy == ZSTD_btopt) | (cctx->params.cParams.strategy == ZSTD_btopt2);
+            U32 const chainMask = (1 << (cctx->params.cParams.chainLog - btplus)) - 1;
+            U32 const supLog = MAX(cctx->params.cParams.chainLog, 17 /* blockSize */);
+            U32 const newLowLimit = (cctx->lowLimit & chainMask) + (1 << supLog);   /* preserve position % chainSize, ensure current-repcode doesn't underflow */
+            U32 const correction = cctx->lowLimit - newLowLimit;
+            ZSTD_reduceIndex(cctx, correction);
+            cctx->base += correction;
+            cctx->dictBase += correction;
+            cctx->lowLimit = newLowLimit;
+            cctx->dictLimit -= correction;
+            if (cctx->nextToUpdate < correction) cctx->nextToUpdate = 0;
+            else cctx->nextToUpdate -= correction;
+        }
+
+        if ((U32)(ip+blockSize - cctx->base) > cctx->loadedDictEnd + maxDist) {
+            /* enforce maxDist */
+            U32 const newLowLimit = (U32)(ip+blockSize - cctx->base) - maxDist;
+            if (cctx->lowLimit < newLowLimit) cctx->lowLimit = newLowLimit;
+            if (cctx->dictLimit < cctx->lowLimit) cctx->dictLimit = cctx->lowLimit;
+        }
+
+        cSize = ZSTD_compressBlock_internal(cctx, op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize, ip, blockSize);
+        if (ZSTD_isError(cSize)) return cSize;
+
+        if (cSize == 0) {  /* block is not compressible */
+            U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(blockSize << 3);
+            if (blockSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall);
+            MEM_writeLE32(op, cBlockHeader24);   /* no pb, 4th byte will be overwritten */
+            memcpy(op + ZSTD_blockHeaderSize, ip, blockSize);
+            cSize = ZSTD_blockHeaderSize+blockSize;
+        } else {
+            U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
+            MEM_writeLE24(op, cBlockHeader24);
+            cSize += ZSTD_blockHeaderSize;
+        }
+
+        remaining -= blockSize;
+        dstCapacity -= cSize;
+        ip += blockSize;
+        op += cSize;
+    }
+
+    if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending;
+    return op-ostart;
+}
+
+
+static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity,
+                                    ZSTD_parameters params, U64 pledgedSrcSize, U32 dictID)
+{   BYTE* const op = (BYTE*)dst;
+    U32   const dictIDSizeCode = (dictID>0) + (dictID>=256) + (dictID>=65536);   /* 0-3 */
+    U32   const checksumFlag = params.fParams.checksumFlag>0;
+    U32   const windowSize = 1U << params.cParams.windowLog;
+    U32   const singleSegment = params.fParams.contentSizeFlag && (windowSize > (pledgedSrcSize-1));
+    BYTE  const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
+    U32   const fcsCode = params.fParams.contentSizeFlag ?
+                     (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) :   /* 0-3 */
+                      0;
+    BYTE  const frameHeaderDecriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) );
+    size_t pos;
+
+    if (dstCapacity < ZSTD_frameHeaderSize_max) return ERROR(dstSize_tooSmall);
+
+    MEM_writeLE32(dst, ZSTD_MAGICNUMBER);
+    op[4] = frameHeaderDecriptionByte; pos=5;
+    if (!singleSegment) op[pos++] = windowLogByte;
+    switch(dictIDSizeCode)
+    {
+        default:   /* impossible */
+        case 0 : break;
+        case 1 : op[pos] = (BYTE)(dictID); pos++; break;
+        case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break;
+        case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break;
+    }
+    switch(fcsCode)
+    {
+        default:   /* impossible */
+        case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break;
+        case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break;
+        case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break;
+        case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break;
+    }
+    return pos;
+}
+
+
+static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx,
+                              void* dst, size_t dstCapacity,
+                        const void* src, size_t srcSize,
+                               U32 frame, U32 lastFrameChunk)
+{
+    const BYTE* const ip = (const BYTE*) src;
+    size_t fhSize = 0;
+
+    if (cctx->stage==ZSTDcs_created) return ERROR(stage_wrong);   /* missing init (ZSTD_compressBegin) */
+
+    if (frame && (cctx->stage==ZSTDcs_init)) {
+        fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->params, cctx->frameContentSize, cctx->dictID);
+        if (ZSTD_isError(fhSize)) return fhSize;
+        dstCapacity -= fhSize;
+        dst = (char*)dst + fhSize;
+        cctx->stage = ZSTDcs_ongoing;
+    }
+
+    /* Check if blocks follow each other */
+    if (src != cctx->nextSrc) {
+        /* not contiguous */
+        ptrdiff_t const delta = cctx->nextSrc - ip;
+        cctx->lowLimit = cctx->dictLimit;
+        cctx->dictLimit = (U32)(cctx->nextSrc - cctx->base);
+        cctx->dictBase = cctx->base;
+        cctx->base -= delta;
+        cctx->nextToUpdate = cctx->dictLimit;
+        if (cctx->dictLimit - cctx->lowLimit < HASH_READ_SIZE) cctx->lowLimit = cctx->dictLimit;   /* too small extDict */
+    }
+
+    /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
+    if ((ip+srcSize > cctx->dictBase + cctx->lowLimit) & (ip < cctx->dictBase + cctx->dictLimit)) {
+        ptrdiff_t const highInputIdx = (ip + srcSize) - cctx->dictBase;
+        U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)cctx->dictLimit) ? cctx->dictLimit : (U32)highInputIdx;
+        cctx->lowLimit = lowLimitMax;
+    }
+
+    cctx->nextSrc = ip + srcSize;
+
+    {   size_t const cSize = frame ?
+                             ZSTD_compress_generic (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) :
+                             ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize);
+        if (ZSTD_isError(cSize)) return cSize;
+        return cSize + fhSize;
+    }
+}
+
+
+size_t ZSTD_compressContinue (ZSTD_CCtx* cctx,
+                              void* dst, size_t dstCapacity,
+                        const void* src, size_t srcSize)
+{
+    return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1, 0);
+}
+
+
+size_t ZSTD_getBlockSizeMax(ZSTD_CCtx* cctx)
+{
+    return MIN (ZSTD_BLOCKSIZE_ABSOLUTEMAX, 1 << cctx->params.cParams.windowLog);
+}
+
+size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    size_t const blockSizeMax = ZSTD_getBlockSizeMax(cctx);
+    if (srcSize > blockSizeMax) return ERROR(srcSize_wrong);
+    return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0, 0);
+}
+
+
+static size_t ZSTD_loadDictionaryContent(ZSTD_CCtx* zc, const void* src, size_t srcSize)
+{
+    const BYTE* const ip = (const BYTE*) src;
+    const BYTE* const iend = ip + srcSize;
+
+    /* input becomes current prefix */
+    zc->lowLimit = zc->dictLimit;
+    zc->dictLimit = (U32)(zc->nextSrc - zc->base);
+    zc->dictBase = zc->base;
+    zc->base += ip - zc->nextSrc;
+    zc->nextToUpdate = zc->dictLimit;
+    zc->loadedDictEnd = (U32)(iend - zc->base);
+
+    zc->nextSrc = iend;
+    if (srcSize <= HASH_READ_SIZE) return 0;
+
+    switch(zc->params.cParams.strategy)
+    {
+    case ZSTD_fast:
+        ZSTD_fillHashTable (zc, iend, zc->params.cParams.searchLength);
+        break;
+
+    case ZSTD_dfast:
+        ZSTD_fillDoubleHashTable (zc, iend, zc->params.cParams.searchLength);
+        break;
+
+    case ZSTD_greedy:
+    case ZSTD_lazy:
+    case ZSTD_lazy2:
+        ZSTD_insertAndFindFirstIndex (zc, iend-HASH_READ_SIZE, zc->params.cParams.searchLength);
+        break;
+
+    case ZSTD_btlazy2:
+    case ZSTD_btopt:
+    case ZSTD_btopt2:
+        ZSTD_updateTree(zc, iend-HASH_READ_SIZE, iend, 1 << zc->params.cParams.searchLog, zc->params.cParams.searchLength);
+        break;
+
+    default:
+        return ERROR(GENERIC);   /* strategy doesn't exist; impossible */
+    }
+
+    zc->nextToUpdate = zc->loadedDictEnd;
+    return 0;
+}
+
+
+/* Dictionaries that assign zero probability to symbols that show up causes problems
+   when FSE encoding.  Refuse dictionaries that assign zero probability to symbols
+   that we may encounter during compression.
+   NOTE: This behavior is not standard and could be improved in the future. */
+static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) {
+    U32 s;
+    if (dictMaxSymbolValue < maxSymbolValue) return ERROR(dictionary_corrupted);
+    for (s = 0; s <= maxSymbolValue; ++s) {
+        if (normalizedCounter[s] == 0) return ERROR(dictionary_corrupted);
+    }
+    return 0;
+}
+
+
+/* Dictionary format :
+    Magic == ZSTD_DICT_MAGIC (4 bytes)
+    HUF_writeCTable(256)
+    FSE_writeNCount(off)
+    FSE_writeNCount(ml)
+    FSE_writeNCount(ll)
+    RepOffsets
+    Dictionary content
+*/
+/*! ZSTD_loadDictEntropyStats() :
+    @return : size read from dictionary
+    note : magic number supposed already checked */
+static size_t ZSTD_loadDictEntropyStats(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
+{
+    const BYTE* dictPtr = (const BYTE*)dict;
+    const BYTE* const dictEnd = dictPtr + dictSize;
+    short offcodeNCount[MaxOff+1];
+    unsigned offcodeMaxValue = MaxOff;
+
+    {   size_t const hufHeaderSize = HUF_readCTable(cctx->hufTable, 255, dict, dictSize);
+        if (HUF_isError(hufHeaderSize)) return ERROR(dictionary_corrupted);
+        dictPtr += hufHeaderSize;
+    }
+
+    {   unsigned offcodeLog;
+        size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
+        if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
+        if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
+        /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
+        CHECK_E (FSE_buildCTable(cctx->offcodeCTable, offcodeNCount, offcodeMaxValue, offcodeLog), dictionary_corrupted);
+        dictPtr += offcodeHeaderSize;
+    }
+
+    {   short matchlengthNCount[MaxML+1];
+        unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+        size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
+        if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
+        if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
+        /* Every match length code must have non-zero probability */
+        CHECK_F (ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML));
+        CHECK_E (FSE_buildCTable(cctx->matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog), dictionary_corrupted);
+        dictPtr += matchlengthHeaderSize;
+    }
+
+    {   short litlengthNCount[MaxLL+1];
+        unsigned litlengthMaxValue = MaxLL, litlengthLog;
+        size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
+        if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
+        if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
+        /* Every literal length code must have non-zero probability */
+        CHECK_F (ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL));
+        CHECK_E(FSE_buildCTable(cctx->litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog), dictionary_corrupted);
+        dictPtr += litlengthHeaderSize;
+    }
+
+    if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
+    cctx->rep[0] = MEM_readLE32(dictPtr+0); if (cctx->rep[0] >= dictSize) return ERROR(dictionary_corrupted);
+    cctx->rep[1] = MEM_readLE32(dictPtr+4); if (cctx->rep[1] >= dictSize) return ERROR(dictionary_corrupted);
+    cctx->rep[2] = MEM_readLE32(dictPtr+8); if (cctx->rep[2] >= dictSize) return ERROR(dictionary_corrupted);
+    dictPtr += 12;
+
+    {   U32 offcodeMax = MaxOff;
+        if ((size_t)(dictEnd - dictPtr) <= ((U32)-1) - 128 KB) {
+            U32 const maxOffset = (U32)(dictEnd - dictPtr) + 128 KB; /* The maximum offset that must be supported */
+            /* Calculate minimum offset code required to represent maxOffset */
+            offcodeMax = ZSTD_highbit32(maxOffset);
+        }
+        /* Every possible supported offset <= dictContentSize + 128 KB must be representable */
+        CHECK_F (ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)));
+    }
+
+    cctx->flagStaticTables = 1;
+    return dictPtr - (const BYTE*)dict;
+}
+
+/** ZSTD_compress_insertDictionary() :
+*   @return : 0, or an error code */
+static size_t ZSTD_compress_insertDictionary(ZSTD_CCtx* zc, const void* dict, size_t dictSize)
+{
+    if ((dict==NULL) || (dictSize<=8)) return 0;
+
+    /* default : dict is pure content */
+    if (MEM_readLE32(dict) != ZSTD_DICT_MAGIC) return ZSTD_loadDictionaryContent(zc, dict, dictSize);
+    zc->dictID = zc->params.fParams.noDictIDFlag ? 0 :  MEM_readLE32((const char*)dict+4);
+
+    /* known magic number : dict is parsed for entropy stats and content */
+    {   size_t const loadError = ZSTD_loadDictEntropyStats(zc, (const char*)dict+8 /* skip dictHeader */, dictSize-8);
+        size_t const eSize = loadError + 8;
+        if (ZSTD_isError(loadError)) return loadError;
+        return ZSTD_loadDictionaryContent(zc, (const char*)dict+eSize, dictSize-eSize);
+    }
+}
+
+
+/*! ZSTD_compressBegin_internal() :
+*   @return : 0, or an error code */
+static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx,
+                             const void* dict, size_t dictSize,
+                                   ZSTD_parameters params, U64 pledgedSrcSize)
+{
+    ZSTD_compResetPolicy_e const crp = dictSize ? ZSTDcrp_fullReset : ZSTDcrp_continue;
+    CHECK_F(ZSTD_resetCCtx_advanced(cctx, params, pledgedSrcSize, crp));
+    return ZSTD_compress_insertDictionary(cctx, dict, dictSize);
+}
+
+
+/*! ZSTD_compressBegin_advanced() :
+*   @return : 0, or an error code */
+size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx,
+                             const void* dict, size_t dictSize,
+                                   ZSTD_parameters params, unsigned long long pledgedSrcSize)
+{
+    /* compression parameters verification and optimization */
+    CHECK_F(ZSTD_checkCParams(params.cParams));
+    return ZSTD_compressBegin_internal(cctx, dict, dictSize, params, pledgedSrcSize);
+}
+
+
+size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel)
+{
+    ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
+    return ZSTD_compressBegin_internal(cctx, dict, dictSize, params, 0);
+}
+
+
+size_t ZSTD_compressBegin(ZSTD_CCtx* zc, int compressionLevel)
+{
+    return ZSTD_compressBegin_usingDict(zc, NULL, 0, compressionLevel);
+}
+
+
+/*! ZSTD_writeEpilogue() :
+*   Ends a frame.
+*   @return : nb of bytes written into dst (or an error code) */
+static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
+{
+    BYTE* const ostart = (BYTE*)dst;
+    BYTE* op = ostart;
+    size_t fhSize = 0;
+
+    if (cctx->stage == ZSTDcs_created) return ERROR(stage_wrong);  /* init missing */
+
+    /* special case : empty frame */
+    if (cctx->stage == ZSTDcs_init) {
+        fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->params, 0, 0);
+        if (ZSTD_isError(fhSize)) return fhSize;
+        dstCapacity -= fhSize;
+        op += fhSize;
+        cctx->stage = ZSTDcs_ongoing;
+    }
+
+    if (cctx->stage != ZSTDcs_ending) {
+        /* write one last empty block, make it the "last" block */
+        U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
+        if (dstCapacity<4) return ERROR(dstSize_tooSmall);
+        MEM_writeLE32(op, cBlockHeader24);
+        op += ZSTD_blockHeaderSize;
+        dstCapacity -= ZSTD_blockHeaderSize;
+    }
+
+    if (cctx->params.fParams.checksumFlag) {
+        U32 const checksum = (U32) XXH64_digest(&cctx->xxhState);
+        if (dstCapacity<4) return ERROR(dstSize_tooSmall);
+        MEM_writeLE32(op, checksum);
+        op += 4;
+    }
+
+    cctx->stage = ZSTDcs_created;  /* return to "created but no init" status */
+    return op-ostart;
+}
+
+
+size_t ZSTD_compressEnd (ZSTD_CCtx* cctx,
+                         void* dst, size_t dstCapacity,
+                   const void* src, size_t srcSize)
+{
+    size_t endResult;
+    size_t const cSize = ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1, 1);
+    if (ZSTD_isError(cSize)) return cSize;
+    endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize);
+    if (ZSTD_isError(endResult)) return endResult;
+    return cSize + endResult;
+}
+
+
+static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx,
+                               void* dst, size_t dstCapacity,
+                         const void* src, size_t srcSize,
+                         const void* dict,size_t dictSize,
+                               ZSTD_parameters params)
+{
+    CHECK_F(ZSTD_compressBegin_internal(cctx, dict, dictSize, params, srcSize));
+    return ZSTD_compressEnd(cctx, dst,  dstCapacity, src, srcSize);
+}
+
+size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx,
+                               void* dst, size_t dstCapacity,
+                         const void* src, size_t srcSize,
+                         const void* dict,size_t dictSize,
+                               ZSTD_parameters params)
+{
+    CHECK_F(ZSTD_checkCParams(params.cParams));
+    return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params);
+}
+
+size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize, int compressionLevel)
+{
+    ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, dictSize);
+    params.fParams.contentSizeFlag = 1;
+    return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params);
+}
+
+size_t ZSTD_compressCCtx (ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel)
+{
+    return ZSTD_compress_usingDict(ctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel);
+}
+
+size_t ZSTD_compress(void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel)
+{
+    size_t result;
+    ZSTD_CCtx ctxBody;
+    memset(&ctxBody, 0, sizeof(ctxBody));
+    memcpy(&ctxBody.customMem, &defaultCustomMem, sizeof(ZSTD_customMem));
+    result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel);
+    ZSTD_free(ctxBody.workSpace, defaultCustomMem);  /* can't free ctxBody itself, as it's on stack; free only heap content */
+    return result;
+}
+
+
+/* =====  Dictionary API  ===== */
+
+struct ZSTD_CDict_s {
+    void* dictContent;
+    size_t dictContentSize;
+    ZSTD_CCtx* refContext;
+};  /* typedef'd tp ZSTD_CDict within "zstd.h" */
+
+size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict)
+{
+    if (cdict==NULL) return 0;   /* support sizeof on NULL */
+    return ZSTD_sizeof_CCtx(cdict->refContext) + cdict->dictContentSize;
+}
+
+ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize, ZSTD_parameters params, ZSTD_customMem customMem)
+{
+    if (!customMem.customAlloc && !customMem.customFree) customMem = defaultCustomMem;
+    if (!customMem.customAlloc || !customMem.customFree) return NULL;
+
+    {   ZSTD_CDict* const cdict = (ZSTD_CDict*) ZSTD_malloc(sizeof(ZSTD_CDict), customMem);
+        void* const dictContent = ZSTD_malloc(dictSize, customMem);
+        ZSTD_CCtx* const cctx = ZSTD_createCCtx_advanced(customMem);
+
+        if (!dictContent || !cdict || !cctx) {
+            ZSTD_free(dictContent, customMem);
+            ZSTD_free(cdict, customMem);
+            ZSTD_free(cctx, customMem);
+            return NULL;
+        }
+
+        if (dictSize) {
+            memcpy(dictContent, dict, dictSize);
+        }
+        {   size_t const errorCode = ZSTD_compressBegin_advanced(cctx, dictContent, dictSize, params, 0);
+            if (ZSTD_isError(errorCode)) {
+                ZSTD_free(dictContent, customMem);
+                ZSTD_free(cdict, customMem);
+                ZSTD_free(cctx, customMem);
+                return NULL;
+        }   }
+
+        cdict->dictContent = dictContent;
+        cdict->dictContentSize = dictSize;
+        cdict->refContext = cctx;
+        return cdict;
+    }
+}
+
+ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel)
+{
+    ZSTD_customMem const allocator = { NULL, NULL, NULL };
+    ZSTD_parameters params = ZSTD_getParams(compressionLevel, 0, dictSize);
+    params.fParams.contentSizeFlag = 1;
+    return ZSTD_createCDict_advanced(dict, dictSize, params, allocator);
+}
+
+size_t ZSTD_freeCDict(ZSTD_CDict* cdict)
+{
+    if (cdict==NULL) return 0;   /* support free on NULL */
+    {   ZSTD_customMem const cMem = cdict->refContext->customMem;
+        ZSTD_freeCCtx(cdict->refContext);
+        ZSTD_free(cdict->dictContent, cMem);
+        ZSTD_free(cdict, cMem);
+        return 0;
+    }
+}
+
+static ZSTD_parameters ZSTD_getParamsFromCDict(const ZSTD_CDict* cdict) {
+    return ZSTD_getParamsFromCCtx(cdict->refContext);
+}
+
+size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict, U64 pledgedSrcSize)
+{
+    if (cdict->dictContentSize) CHECK_F(ZSTD_copyCCtx(cctx, cdict->refContext, pledgedSrcSize))
+    else CHECK_F(ZSTD_compressBegin_advanced(cctx, NULL, 0, cdict->refContext->params, pledgedSrcSize));
+    return 0;
+}
+
+/*! ZSTD_compress_usingCDict() :
+*   Compression using a digested Dictionary.
+*   Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
+*   Note that compression level is decided during dictionary creation */
+size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
+                                void* dst, size_t dstCapacity,
+                                const void* src, size_t srcSize,
+                                const ZSTD_CDict* cdict)
+{
+    CHECK_F(ZSTD_compressBegin_usingCDict(cctx, cdict, srcSize));
+
+    if (cdict->refContext->params.fParams.contentSizeFlag==1) {
+        cctx->params.fParams.contentSizeFlag = 1;
+        cctx->frameContentSize = srcSize;
+    }
+
+    return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
+}
+
+
+
+/* ******************************************************************
+*  Streaming
+********************************************************************/
+
+typedef enum { zcss_init, zcss_load, zcss_flush, zcss_final } ZSTD_cStreamStage;
+
+struct ZSTD_CStream_s {
+    ZSTD_CCtx* cctx;
+    ZSTD_CDict* cdictLocal;
+    const ZSTD_CDict* cdict;
+    char*  inBuff;
+    size_t inBuffSize;
+    size_t inToCompress;
+    size_t inBuffPos;
+    size_t inBuffTarget;
+    size_t blockSize;
+    char*  outBuff;
+    size_t outBuffSize;
+    size_t outBuffContentSize;
+    size_t outBuffFlushedSize;
+    ZSTD_cStreamStage stage;
+    U32    checksum;
+    U32    frameEnded;
+    ZSTD_parameters params;
+    ZSTD_customMem customMem;
+};   /* typedef'd to ZSTD_CStream within "zstd.h" */
+
+ZSTD_CStream* ZSTD_createCStream(void)
+{
+    return ZSTD_createCStream_advanced(defaultCustomMem);
+}
+
+ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem)
+{
+    ZSTD_CStream* zcs;
+
+    if (!customMem.customAlloc && !customMem.customFree) customMem = defaultCustomMem;
+    if (!customMem.customAlloc || !customMem.customFree) return NULL;
+
+    zcs = (ZSTD_CStream*)ZSTD_malloc(sizeof(ZSTD_CStream), customMem);
+    if (zcs==NULL) return NULL;
+    memset(zcs, 0, sizeof(ZSTD_CStream));
+    memcpy(&zcs->customMem, &customMem, sizeof(ZSTD_customMem));
+    zcs->cctx = ZSTD_createCCtx_advanced(customMem);
+    if (zcs->cctx == NULL) { ZSTD_freeCStream(zcs); return NULL; }
+    return zcs;
+}
+
+size_t ZSTD_freeCStream(ZSTD_CStream* zcs)
+{
+    if (zcs==NULL) return 0;   /* support free on NULL */
+    {   ZSTD_customMem const cMem = zcs->customMem;
+        ZSTD_freeCCtx(zcs->cctx);
+        ZSTD_freeCDict(zcs->cdictLocal);
+        ZSTD_free(zcs->inBuff, cMem);
+        ZSTD_free(zcs->outBuff, cMem);
+        ZSTD_free(zcs, cMem);
+        return 0;
+    }
+}
+
+
+/*======   Initialization   ======*/
+
+size_t ZSTD_CStreamInSize(void)  { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
+size_t ZSTD_CStreamOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_ABSOLUTEMAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ; }
+
+size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize)
+{
+    if (zcs->inBuffSize==0) return ERROR(stage_wrong);   /* zcs has not been init at least once */
+
+    if (zcs->cdict) CHECK_F(ZSTD_compressBegin_usingCDict(zcs->cctx, zcs->cdict, pledgedSrcSize))
+    else CHECK_F(ZSTD_compressBegin_advanced(zcs->cctx, NULL, 0, zcs->params, pledgedSrcSize));
+
+    zcs->inToCompress = 0;
+    zcs->inBuffPos = 0;
+    zcs->inBuffTarget = zcs->blockSize;
+    zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
+    zcs->stage = zcss_load;
+    zcs->frameEnded = 0;
+    return 0;   /* ready to go */
+}
+
+size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
+                                 const void* dict, size_t dictSize,
+                                 ZSTD_parameters params, unsigned long long pledgedSrcSize)
+{
+    /* allocate buffers */
+    {   size_t const neededInBuffSize = (size_t)1 << params.cParams.windowLog;
+        if (zcs->inBuffSize < neededInBuffSize) {
+            zcs->inBuffSize = neededInBuffSize;
+            ZSTD_free(zcs->inBuff, zcs->customMem);
+            zcs->inBuff = (char*) ZSTD_malloc(neededInBuffSize, zcs->customMem);
+            if (zcs->inBuff == NULL) return ERROR(memory_allocation);
+        }
+        zcs->blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, neededInBuffSize);
+    }
+    if (zcs->outBuffSize < ZSTD_compressBound(zcs->blockSize)+1) {
+        zcs->outBuffSize = ZSTD_compressBound(zcs->blockSize)+1;
+        ZSTD_free(zcs->outBuff, zcs->customMem);
+        zcs->outBuff = (char*) ZSTD_malloc(zcs->outBuffSize, zcs->customMem);
+        if (zcs->outBuff == NULL) return ERROR(memory_allocation);
+    }
+
+    if (dict) {
+        ZSTD_freeCDict(zcs->cdictLocal);
+        zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, params, zcs->customMem);
+        if (zcs->cdictLocal == NULL) return ERROR(memory_allocation);
+        zcs->cdict = zcs->cdictLocal;
+    } else zcs->cdict = NULL;
+
+    zcs->checksum = params.fParams.checksumFlag > 0;
+    zcs->params = params;
+
+    return ZSTD_resetCStream(zcs, pledgedSrcSize);
+}
+
+/* note : cdict must outlive compression session */
+size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict)
+{
+    ZSTD_parameters const params = ZSTD_getParamsFromCDict(cdict);
+    size_t const initError =  ZSTD_initCStream_advanced(zcs, NULL, 0, params, 0);
+    zcs->cdict = cdict;
+    return initError;
+}
+
+size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel)
+{
+    ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
+    return ZSTD_initCStream_advanced(zcs, dict, dictSize, params, 0);
+}
+
+size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel)
+{
+    return ZSTD_initCStream_usingDict(zcs, NULL, 0, compressionLevel);
+}
+
+size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs)
+{
+    if (zcs==NULL) return 0;   /* support sizeof on NULL */
+    return sizeof(zcs) + ZSTD_sizeof_CCtx(zcs->cctx) + ZSTD_sizeof_CDict(zcs->cdictLocal) + zcs->outBuffSize + zcs->inBuffSize;
+}
+
+/*======   Compression   ======*/
+
+typedef enum { zsf_gather, zsf_flush, zsf_end } ZSTD_flush_e;
+
+MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    size_t const length = MIN(dstCapacity, srcSize);
+    memcpy(dst, src, length);
+    return length;
+}
+
+static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
+                              void* dst, size_t* dstCapacityPtr,
+                        const void* src, size_t* srcSizePtr,
+                              ZSTD_flush_e const flush)
+{
+    U32 someMoreWork = 1;
+    const char* const istart = (const char*)src;
+    const char* const iend = istart + *srcSizePtr;
+    const char* ip = istart;
+    char* const ostart = (char*)dst;
+    char* const oend = ostart + *dstCapacityPtr;
+    char* op = ostart;
+
+    while (someMoreWork) {
+        switch(zcs->stage)
+        {
+        case zcss_init: return ERROR(init_missing);   /* call ZBUFF_compressInit() first ! */
+
+        case zcss_load:
+            /* complete inBuffer */
+            {   size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
+                size_t const loaded = ZSTD_limitCopy(zcs->inBuff + zcs->inBuffPos, toLoad, ip, iend-ip);
+                zcs->inBuffPos += loaded;
+                ip += loaded;
+                if ( (zcs->inBuffPos==zcs->inToCompress) || (!flush && (toLoad != loaded)) ) {
+                    someMoreWork = 0; break;  /* not enough input to get a full block : stop there, wait for more */
+            }   }
+            /* compress current block (note : this stage cannot be stopped in the middle) */
+            {   void* cDst;
+                size_t cSize;
+                size_t const iSize = zcs->inBuffPos - zcs->inToCompress;
+                size_t oSize = oend-op;
+                if (oSize >= ZSTD_compressBound(iSize))
+                    cDst = op;   /* compress directly into output buffer (avoid flush stage) */
+                else
+                    cDst = zcs->outBuff, oSize = zcs->outBuffSize;
+                cSize = (flush == zsf_end) ?
+                        ZSTD_compressEnd(zcs->cctx, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize) :
+                        ZSTD_compressContinue(zcs->cctx, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize);
+                if (ZSTD_isError(cSize)) return cSize;
+                if (flush == zsf_end) zcs->frameEnded = 1;
+                /* prepare next block */
+                zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
+                if (zcs->inBuffTarget > zcs->inBuffSize)
+                    zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize;   /* note : inBuffSize >= blockSize */
+                zcs->inToCompress = zcs->inBuffPos;
+                if (cDst == op) { op += cSize; break; }   /* no need to flush */
+                zcs->outBuffContentSize = cSize;
+                zcs->outBuffFlushedSize = 0;
+                zcs->stage = zcss_flush;   /* pass-through to flush stage */
+            }
+
+        case zcss_flush:
+            {   size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
+                size_t const flushed = ZSTD_limitCopy(op, oend-op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
+                op += flushed;
+                zcs->outBuffFlushedSize += flushed;
+                if (toFlush!=flushed) { someMoreWork = 0; break; }  /* dst too small to store flushed data : stop there */
+                zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
+                zcs->stage = zcss_load;
+                break;
+            }
+
+        case zcss_final:
+            someMoreWork = 0;   /* do nothing */
+            break;
+
+        default:
+            return ERROR(GENERIC);   /* impossible */
+        }
+    }
+
+    *srcSizePtr = ip - istart;
+    *dstCapacityPtr = op - ostart;
+    if (zcs->frameEnded) return 0;
+    {   size_t hintInSize = zcs->inBuffTarget - zcs->inBuffPos;
+        if (hintInSize==0) hintInSize = zcs->blockSize;
+        return hintInSize;
+    }
+}
+
+size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
+{
+    size_t sizeRead = input->size - input->pos;
+    size_t sizeWritten = output->size - output->pos;
+    size_t const result = ZSTD_compressStream_generic(zcs,
+                                                      (char*)(output->dst) + output->pos, &sizeWritten,
+                                                      (const char*)(input->src) + input->pos, &sizeRead, zsf_gather);
+    input->pos += sizeRead;
+    output->pos += sizeWritten;
+    return result;
+}
+
+
+/*======   Finalize   ======*/
+
+/*! ZSTD_flushStream() :
+*   @return : amount of data remaining to flush */
+size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
+{
+    size_t srcSize = 0;
+    size_t sizeWritten = output->size - output->pos;
+    size_t const result = ZSTD_compressStream_generic(zcs,
+                                                     (char*)(output->dst) + output->pos, &sizeWritten,
+                                                     &srcSize, &srcSize, /* use a valid src address instead of NULL */
+                                                      zsf_flush);
+    output->pos += sizeWritten;
+    if (ZSTD_isError(result)) return result;
+    return zcs->outBuffContentSize - zcs->outBuffFlushedSize;   /* remaining to flush */
+}
+
+
+size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
+{
+    BYTE* const ostart = (BYTE*)(output->dst) + output->pos;
+    BYTE* const oend = (BYTE*)(output->dst) + output->size;
+    BYTE* op = ostart;
+
+    if (zcs->stage != zcss_final) {
+        /* flush whatever remains */
+        size_t srcSize = 0;
+        size_t sizeWritten = output->size - output->pos;
+        size_t const notEnded = ZSTD_compressStream_generic(zcs, ostart, &sizeWritten, &srcSize, &srcSize, zsf_end);  /* use a valid src address instead of NULL */
+        size_t const remainingToFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
+        op += sizeWritten;
+        if (remainingToFlush) {
+            output->pos += sizeWritten;
+            return remainingToFlush + ZSTD_BLOCKHEADERSIZE /* final empty block */ + (zcs->checksum * 4);
+        }
+        /* create epilogue */
+        zcs->stage = zcss_final;
+        zcs->outBuffContentSize = !notEnded ? 0 :
+            ZSTD_compressEnd(zcs->cctx, zcs->outBuff, zcs->outBuffSize, NULL, 0);  /* write epilogue, including final empty block, into outBuff */
+    }
+
+    /* flush epilogue */
+    {   size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
+        size_t const flushed = ZSTD_limitCopy(op, oend-op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
+        op += flushed;
+        zcs->outBuffFlushedSize += flushed;
+        output->pos += op-ostart;
+        if (toFlush==flushed) zcs->stage = zcss_init;  /* end reached */
+        return toFlush - flushed;
+    }
+}
+
+
+
+/*-=====  Pre-defined compression levels  =====-*/
+
+#define ZSTD_DEFAULT_CLEVEL 1
+#define ZSTD_MAX_CLEVEL     22
+int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
+
+static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
+{   /* "default" */
+    /* W,  C,  H,  S,  L, TL, strat */
+    { 18, 12, 12,  1,  7, 16, ZSTD_fast    },  /* level  0 - never used */
+    { 19, 13, 14,  1,  7, 16, ZSTD_fast    },  /* level  1 */
+    { 19, 15, 16,  1,  6, 16, ZSTD_fast    },  /* level  2 */
+    { 20, 16, 17,  1,  5, 16, ZSTD_dfast   },  /* level  3.*/
+    { 20, 18, 18,  1,  5, 16, ZSTD_dfast   },  /* level  4.*/
+    { 20, 15, 18,  3,  5, 16, ZSTD_greedy  },  /* level  5 */
+    { 21, 16, 19,  2,  5, 16, ZSTD_lazy    },  /* level  6 */
+    { 21, 17, 20,  3,  5, 16, ZSTD_lazy    },  /* level  7 */
+    { 21, 18, 20,  3,  5, 16, ZSTD_lazy2   },  /* level  8 */
+    { 21, 20, 20,  3,  5, 16, ZSTD_lazy2   },  /* level  9 */
+    { 21, 19, 21,  4,  5, 16, ZSTD_lazy2   },  /* level 10 */
+    { 22, 20, 22,  4,  5, 16, ZSTD_lazy2   },  /* level 11 */
+    { 22, 20, 22,  5,  5, 16, ZSTD_lazy2   },  /* level 12 */
+    { 22, 21, 22,  5,  5, 16, ZSTD_lazy2   },  /* level 13 */
+    { 22, 21, 22,  6,  5, 16, ZSTD_lazy2   },  /* level 14 */
+    { 22, 21, 21,  5,  5, 16, ZSTD_btlazy2 },  /* level 15 */
+    { 23, 22, 22,  5,  5, 16, ZSTD_btlazy2 },  /* level 16 */
+    { 23, 21, 22,  4,  5, 24, ZSTD_btopt   },  /* level 17 */
+    { 23, 23, 22,  6,  5, 32, ZSTD_btopt   },  /* level 18 */
+    { 23, 23, 22,  6,  3, 48, ZSTD_btopt   },  /* level 19 */
+    { 25, 25, 23,  7,  3, 64, ZSTD_btopt2  },  /* level 20 */
+    { 26, 26, 23,  7,  3,256, ZSTD_btopt2  },  /* level 21 */
+    { 27, 27, 25,  9,  3,512, ZSTD_btopt2  },  /* level 22 */
+},
+{   /* for srcSize <= 256 KB */
+    /* W,  C,  H,  S,  L,  T, strat */
+    {  0,  0,  0,  0,  0,  0, ZSTD_fast    },  /* level  0 - not used */
+    { 18, 13, 14,  1,  6,  8, ZSTD_fast    },  /* level  1 */
+    { 18, 14, 13,  1,  5,  8, ZSTD_dfast   },  /* level  2 */
+    { 18, 16, 15,  1,  5,  8, ZSTD_dfast   },  /* level  3 */
+    { 18, 15, 17,  1,  5,  8, ZSTD_greedy  },  /* level  4.*/
+    { 18, 16, 17,  4,  5,  8, ZSTD_greedy  },  /* level  5.*/
+    { 18, 16, 17,  3,  5,  8, ZSTD_lazy    },  /* level  6.*/
+    { 18, 17, 17,  4,  4,  8, ZSTD_lazy    },  /* level  7 */
+    { 18, 17, 17,  4,  4,  8, ZSTD_lazy2   },  /* level  8 */
+    { 18, 17, 17,  5,  4,  8, ZSTD_lazy2   },  /* level  9 */
+    { 18, 17, 17,  6,  4,  8, ZSTD_lazy2   },  /* level 10 */
+    { 18, 18, 17,  6,  4,  8, ZSTD_lazy2   },  /* level 11.*/
+    { 18, 18, 17,  7,  4,  8, ZSTD_lazy2   },  /* level 12.*/
+    { 18, 19, 17,  6,  4,  8, ZSTD_btlazy2 },  /* level 13 */
+    { 18, 18, 18,  4,  4, 16, ZSTD_btopt   },  /* level 14.*/
+    { 18, 18, 18,  4,  3, 16, ZSTD_btopt   },  /* level 15.*/
+    { 18, 19, 18,  6,  3, 32, ZSTD_btopt   },  /* level 16.*/
+    { 18, 19, 18,  8,  3, 64, ZSTD_btopt   },  /* level 17.*/
+    { 18, 19, 18,  9,  3,128, ZSTD_btopt   },  /* level 18.*/
+    { 18, 19, 18, 10,  3,256, ZSTD_btopt   },  /* level 19.*/
+    { 18, 19, 18, 11,  3,512, ZSTD_btopt2  },  /* level 20.*/
+    { 18, 19, 18, 12,  3,512, ZSTD_btopt2  },  /* level 21.*/
+    { 18, 19, 18, 13,  3,512, ZSTD_btopt2  },  /* level 22.*/
+},
+{   /* for srcSize <= 128 KB */
+    /* W,  C,  H,  S,  L,  T, strat */
+    { 17, 12, 12,  1,  7,  8, ZSTD_fast    },  /* level  0 - not used */
+    { 17, 12, 13,  1,  6,  8, ZSTD_fast    },  /* level  1 */
+    { 17, 13, 16,  1,  5,  8, ZSTD_fast    },  /* level  2 */
+    { 17, 16, 16,  2,  5,  8, ZSTD_dfast   },  /* level  3 */
+    { 17, 13, 15,  3,  4,  8, ZSTD_greedy  },  /* level  4 */
+    { 17, 15, 17,  4,  4,  8, ZSTD_greedy  },  /* level  5 */
+    { 17, 16, 17,  3,  4,  8, ZSTD_lazy    },  /* level  6 */
+    { 17, 15, 17,  4,  4,  8, ZSTD_lazy2   },  /* level  7 */
+    { 17, 17, 17,  4,  4,  8, ZSTD_lazy2   },  /* level  8 */
+    { 17, 17, 17,  5,  4,  8, ZSTD_lazy2   },  /* level  9 */
+    { 17, 17, 17,  6,  4,  8, ZSTD_lazy2   },  /* level 10 */
+    { 17, 17, 17,  7,  4,  8, ZSTD_lazy2   },  /* level 11 */
+    { 17, 17, 17,  8,  4,  8, ZSTD_lazy2   },  /* level 12 */
+    { 17, 18, 17,  6,  4,  8, ZSTD_btlazy2 },  /* level 13.*/
+    { 17, 17, 17,  7,  3,  8, ZSTD_btopt   },  /* level 14.*/
+    { 17, 17, 17,  7,  3, 16, ZSTD_btopt   },  /* level 15.*/
+    { 17, 18, 17,  7,  3, 32, ZSTD_btopt   },  /* level 16.*/
+    { 17, 18, 17,  7,  3, 64, ZSTD_btopt   },  /* level 17.*/
+    { 17, 18, 17,  7,  3,256, ZSTD_btopt   },  /* level 18.*/
+    { 17, 18, 17,  8,  3,256, ZSTD_btopt   },  /* level 19.*/
+    { 17, 18, 17,  9,  3,256, ZSTD_btopt2  },  /* level 20.*/
+    { 17, 18, 17, 10,  3,256, ZSTD_btopt2  },  /* level 21.*/
+    { 17, 18, 17, 11,  3,512, ZSTD_btopt2  },  /* level 22.*/
+},
+{   /* for srcSize <= 16 KB */
+    /* W,  C,  H,  S,  L,  T, strat */
+    { 14, 12, 12,  1,  7,  6, ZSTD_fast    },  /* level  0 - not used */
+    { 14, 14, 14,  1,  6,  6, ZSTD_fast    },  /* level  1 */
+    { 14, 14, 14,  1,  4,  6, ZSTD_fast    },  /* level  2 */
+    { 14, 14, 14,  1,  4,  6, ZSTD_dfast   },  /* level  3.*/
+    { 14, 14, 14,  4,  4,  6, ZSTD_greedy  },  /* level  4.*/
+    { 14, 14, 14,  3,  4,  6, ZSTD_lazy    },  /* level  5.*/
+    { 14, 14, 14,  4,  4,  6, ZSTD_lazy2   },  /* level  6 */
+    { 14, 14, 14,  5,  4,  6, ZSTD_lazy2   },  /* level  7 */
+    { 14, 14, 14,  6,  4,  6, ZSTD_lazy2   },  /* level  8.*/
+    { 14, 15, 14,  6,  4,  6, ZSTD_btlazy2 },  /* level  9.*/
+    { 14, 15, 14,  3,  3,  6, ZSTD_btopt   },  /* level 10.*/
+    { 14, 15, 14,  6,  3,  8, ZSTD_btopt   },  /* level 11.*/
+    { 14, 15, 14,  6,  3, 16, ZSTD_btopt   },  /* level 12.*/
+    { 14, 15, 14,  6,  3, 24, ZSTD_btopt   },  /* level 13.*/
+    { 14, 15, 15,  6,  3, 48, ZSTD_btopt   },  /* level 14.*/
+    { 14, 15, 15,  6,  3, 64, ZSTD_btopt   },  /* level 15.*/
+    { 14, 15, 15,  6,  3, 96, ZSTD_btopt   },  /* level 16.*/
+    { 14, 15, 15,  6,  3,128, ZSTD_btopt   },  /* level 17.*/
+    { 14, 15, 15,  6,  3,256, ZSTD_btopt   },  /* level 18.*/
+    { 14, 15, 15,  7,  3,256, ZSTD_btopt   },  /* level 19.*/
+    { 14, 15, 15,  8,  3,256, ZSTD_btopt2  },  /* level 20.*/
+    { 14, 15, 15,  9,  3,256, ZSTD_btopt2  },  /* level 21.*/
+    { 14, 15, 15, 10,  3,256, ZSTD_btopt2  },  /* level 22.*/
+},
+};
+
+/*! ZSTD_getCParams() :
+*   @return ZSTD_compressionParameters structure for a selected compression level, `srcSize` and `dictSize`.
+*   Size values are optional, provide 0 if not known or unused */
+ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSize, size_t dictSize)
+{
+    ZSTD_compressionParameters cp;
+    size_t const addedSize = srcSize ? 0 : 500;
+    U64 const rSize = srcSize+dictSize ? srcSize+dictSize+addedSize : (U64)-1;
+    U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB);   /* intentional underflow for srcSizeHint == 0 */
+    if (compressionLevel <= 0) compressionLevel = ZSTD_DEFAULT_CLEVEL;   /* 0 == default; no negative compressionLevel yet */
+    if (compressionLevel > ZSTD_MAX_CLEVEL) compressionLevel = ZSTD_MAX_CLEVEL;
+    cp = ZSTD_defaultCParameters[tableID][compressionLevel];
+    if (MEM_32bits()) {   /* auto-correction, for 32-bits mode */
+        if (cp.windowLog > ZSTD_WINDOWLOG_MAX) cp.windowLog = ZSTD_WINDOWLOG_MAX;
+        if (cp.chainLog > ZSTD_CHAINLOG_MAX) cp.chainLog = ZSTD_CHAINLOG_MAX;
+        if (cp.hashLog > ZSTD_HASHLOG_MAX) cp.hashLog = ZSTD_HASHLOG_MAX;
+    }
+    cp = ZSTD_adjustCParams(cp, srcSize, dictSize);
+    return cp;
+}
+
+/*! ZSTD_getParams() :
+*   same as ZSTD_getCParams(), but @return a `ZSTD_parameters` object (instead of `ZSTD_compressionParameters`).
+*   All fields of `ZSTD_frameParameters` are set to default (0) */
+ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSize, size_t dictSize) {
+    ZSTD_parameters params;
+    ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSize, dictSize);
+    memset(&params, 0, sizeof(params));
+    params.cParams = cParams;
+    return params;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/compress/zstd_opt.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,900 @@
+/**
+ * Copyright (c) 2016-present, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+
+/* Note : this file is intended to be included within zstd_compress.c */
+
+
+#ifndef ZSTD_OPT_H_91842398743
+#define ZSTD_OPT_H_91842398743
+
+
+#define ZSTD_FREQ_DIV   5
+#define ZSTD_MAX_PRICE  (1<<30)
+
+/*-*************************************
+*  Price functions for optimal parser
+***************************************/
+FORCE_INLINE void ZSTD_setLog2Prices(seqStore_t* ssPtr)
+{
+    ssPtr->log2matchLengthSum = ZSTD_highbit32(ssPtr->matchLengthSum+1);
+    ssPtr->log2litLengthSum = ZSTD_highbit32(ssPtr->litLengthSum+1);
+    ssPtr->log2litSum = ZSTD_highbit32(ssPtr->litSum+1);
+    ssPtr->log2offCodeSum = ZSTD_highbit32(ssPtr->offCodeSum+1);
+    ssPtr->factor = 1 + ((ssPtr->litSum>>5) / ssPtr->litLengthSum) + ((ssPtr->litSum<<1) / (ssPtr->litSum + ssPtr->matchSum));
+}
+
+
+MEM_STATIC void ZSTD_rescaleFreqs(seqStore_t* ssPtr)
+{
+    unsigned u;
+
+    ssPtr->cachedLiterals = NULL;
+    ssPtr->cachedPrice = ssPtr->cachedLitLength = 0;
+
+    if (ssPtr->litLengthSum == 0) {
+        ssPtr->litSum = (2<<Litbits);
+        ssPtr->litLengthSum = MaxLL+1;
+        ssPtr->matchLengthSum = MaxML+1;
+        ssPtr->offCodeSum = (MaxOff+1);
+        ssPtr->matchSum = (2<<Litbits);
+
+        for (u=0; u<=MaxLit; u++)
+            ssPtr->litFreq[u] = 2;
+        for (u=0; u<=MaxLL; u++)
+            ssPtr->litLengthFreq[u] = 1;
+        for (u=0; u<=MaxML; u++)
+            ssPtr->matchLengthFreq[u] = 1;
+        for (u=0; u<=MaxOff; u++)
+            ssPtr->offCodeFreq[u] = 1;
+    } else {
+        ssPtr->matchLengthSum = 0;
+        ssPtr->litLengthSum = 0;
+        ssPtr->offCodeSum = 0;
+        ssPtr->matchSum = 0;
+        ssPtr->litSum = 0;
+
+        for (u=0; u<=MaxLit; u++) {
+            ssPtr->litFreq[u] = 1 + (ssPtr->litFreq[u]>>ZSTD_FREQ_DIV);
+            ssPtr->litSum += ssPtr->litFreq[u];
+        }
+        for (u=0; u<=MaxLL; u++) {
+            ssPtr->litLengthFreq[u] = 1 + (ssPtr->litLengthFreq[u]>>ZSTD_FREQ_DIV);
+            ssPtr->litLengthSum += ssPtr->litLengthFreq[u];
+        }
+        for (u=0; u<=MaxML; u++) {
+            ssPtr->matchLengthFreq[u] = 1 + (ssPtr->matchLengthFreq[u]>>ZSTD_FREQ_DIV);
+            ssPtr->matchLengthSum += ssPtr->matchLengthFreq[u];
+            ssPtr->matchSum += ssPtr->matchLengthFreq[u] * (u + 3);
+        }
+        for (u=0; u<=MaxOff; u++) {
+            ssPtr->offCodeFreq[u] = 1 + (ssPtr->offCodeFreq[u]>>ZSTD_FREQ_DIV);
+            ssPtr->offCodeSum += ssPtr->offCodeFreq[u];
+        }
+    }
+
+    ZSTD_setLog2Prices(ssPtr);
+}
+
+
+FORCE_INLINE U32 ZSTD_getLiteralPrice(seqStore_t* ssPtr, U32 litLength, const BYTE* literals)
+{
+    U32 price, u;
+
+    if (litLength == 0)
+        return ssPtr->log2litLengthSum - ZSTD_highbit32(ssPtr->litLengthFreq[0]+1);
+
+    /* literals */
+    if (ssPtr->cachedLiterals == literals) {
+        U32 const additional = litLength - ssPtr->cachedLitLength;
+        const BYTE* literals2 = ssPtr->cachedLiterals + ssPtr->cachedLitLength;
+        price = ssPtr->cachedPrice + additional * ssPtr->log2litSum;
+        for (u=0; u < additional; u++)
+            price -= ZSTD_highbit32(ssPtr->litFreq[literals2[u]]+1);
+        ssPtr->cachedPrice = price;
+        ssPtr->cachedLitLength = litLength;
+    } else {
+        price = litLength * ssPtr->log2litSum;
+        for (u=0; u < litLength; u++)
+            price -= ZSTD_highbit32(ssPtr->litFreq[literals[u]]+1);
+
+        if (litLength >= 12) {
+            ssPtr->cachedLiterals = literals;
+            ssPtr->cachedPrice = price;
+            ssPtr->cachedLitLength = litLength;
+        }
+    }
+
+    /* literal Length */
+    {   const BYTE LL_deltaCode = 19;
+        const BYTE llCode = (litLength>63) ? (BYTE)ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
+        price += LL_bits[llCode] + ssPtr->log2litLengthSum - ZSTD_highbit32(ssPtr->litLengthFreq[llCode]+1);
+    }
+
+    return price;
+}
+
+
+FORCE_INLINE U32 ZSTD_getPrice(seqStore_t* seqStorePtr, U32 litLength, const BYTE* literals, U32 offset, U32 matchLength, const int ultra)
+{
+    /* offset */
+    BYTE const offCode = (BYTE)ZSTD_highbit32(offset+1);
+    U32 price = offCode + seqStorePtr->log2offCodeSum - ZSTD_highbit32(seqStorePtr->offCodeFreq[offCode]+1);
+
+    if (!ultra && offCode >= 20) price += (offCode-19)*2;
+
+    /* match Length */
+    {   const BYTE ML_deltaCode = 36;
+        const BYTE mlCode = (matchLength>127) ? (BYTE)ZSTD_highbit32(matchLength) + ML_deltaCode : ML_Code[matchLength];
+        price += ML_bits[mlCode] + seqStorePtr->log2matchLengthSum - ZSTD_highbit32(seqStorePtr->matchLengthFreq[mlCode]+1);
+    }
+
+    return price + ZSTD_getLiteralPrice(seqStorePtr, litLength, literals) + seqStorePtr->factor;
+}
+
+
+MEM_STATIC void ZSTD_updatePrice(seqStore_t* seqStorePtr, U32 litLength, const BYTE* literals, U32 offset, U32 matchLength)
+{
+    U32 u;
+
+    /* literals */
+    seqStorePtr->litSum += litLength;
+    for (u=0; u < litLength; u++)
+        seqStorePtr->litFreq[literals[u]]++;
+
+    /* literal Length */
+    {   const BYTE LL_deltaCode = 19;
+        const BYTE llCode = (litLength>63) ? (BYTE)ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
+        seqStorePtr->litLengthFreq[llCode]++;
+        seqStorePtr->litLengthSum++;
+    }
+
+    /* match offset */
+	{   BYTE const offCode = (BYTE)ZSTD_highbit32(offset+1);
+		seqStorePtr->offCodeSum++;
+		seqStorePtr->offCodeFreq[offCode]++;
+	}
+
+    /* match Length */
+    {   const BYTE ML_deltaCode = 36;
+        const BYTE mlCode = (matchLength>127) ? (BYTE)ZSTD_highbit32(matchLength) + ML_deltaCode : ML_Code[matchLength];
+        seqStorePtr->matchLengthFreq[mlCode]++;
+        seqStorePtr->matchLengthSum++;
+    }
+
+    ZSTD_setLog2Prices(seqStorePtr);
+}
+
+
+#define SET_PRICE(pos, mlen_, offset_, litlen_, price_)   \
+    {                                                 \
+        while (last_pos < pos)  { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } \
+        opt[pos].mlen = mlen_;                         \
+        opt[pos].off = offset_;                        \
+        opt[pos].litlen = litlen_;                     \
+        opt[pos].price = price_;                       \
+    }
+
+
+
+/* Update hashTable3 up to ip (excluded)
+   Assumption : always within prefix (ie. not within extDict) */
+FORCE_INLINE
+U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_CCtx* zc, const BYTE* ip)
+{
+    U32* const hashTable3  = zc->hashTable3;
+    U32 const hashLog3  = zc->hashLog3;
+    const BYTE* const base = zc->base;
+    U32 idx = zc->nextToUpdate3;
+    const U32 target = zc->nextToUpdate3 = (U32)(ip - base);
+    const size_t hash3 = ZSTD_hash3Ptr(ip, hashLog3);
+
+    while(idx < target) {
+        hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
+        idx++;
+    }
+
+    return hashTable3[hash3];
+}
+
+
+/*-*************************************
+*  Binary Tree search
+***************************************/
+static U32 ZSTD_insertBtAndGetAllMatches (
+                        ZSTD_CCtx* zc,
+                        const BYTE* const ip, const BYTE* const iLimit,
+                        U32 nbCompares, const U32 mls,
+                        U32 extDict, ZSTD_match_t* matches, const U32 minMatchLen)
+{
+    const BYTE* const base = zc->base;
+    const U32 current = (U32)(ip-base);
+    const U32 hashLog = zc->params.cParams.hashLog;
+    const size_t h  = ZSTD_hashPtr(ip, hashLog, mls);
+    U32* const hashTable = zc->hashTable;
+    U32 matchIndex  = hashTable[h];
+    U32* const bt   = zc->chainTable;
+    const U32 btLog = zc->params.cParams.chainLog - 1;
+    const U32 btMask= (1U << btLog) - 1;
+    size_t commonLengthSmaller=0, commonLengthLarger=0;
+    const BYTE* const dictBase = zc->dictBase;
+    const U32 dictLimit = zc->dictLimit;
+    const BYTE* const dictEnd = dictBase + dictLimit;
+    const BYTE* const prefixStart = base + dictLimit;
+    const U32 btLow = btMask >= current ? 0 : current - btMask;
+    const U32 windowLow = zc->lowLimit;
+    U32* smallerPtr = bt + 2*(current&btMask);
+    U32* largerPtr  = bt + 2*(current&btMask) + 1;
+    U32 matchEndIdx = current+8;
+    U32 dummy32;   /* to be nullified at the end */
+    U32 mnum = 0;
+
+    const U32 minMatch = (mls == 3) ? 3 : 4;
+    size_t bestLength = minMatchLen-1;
+
+    if (minMatch == 3) { /* HC3 match finder */
+        U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3 (zc, ip);
+        if (matchIndex3>windowLow && (current - matchIndex3 < (1<<18))) {
+            const BYTE* match;
+            size_t currentMl=0;
+            if ((!extDict) || matchIndex3 >= dictLimit) {
+                match = base + matchIndex3;
+                if (match[bestLength] == ip[bestLength]) currentMl = ZSTD_count(ip, match, iLimit);
+            } else {
+                match = dictBase + matchIndex3;
+                if (MEM_readMINMATCH(match, MINMATCH) == MEM_readMINMATCH(ip, MINMATCH))    /* assumption : matchIndex3 <= dictLimit-4 (by table construction) */
+                    currentMl = ZSTD_count_2segments(ip+MINMATCH, match+MINMATCH, iLimit, dictEnd, prefixStart) + MINMATCH;
+            }
+
+            /* save best solution */
+            if (currentMl > bestLength) {
+                bestLength = currentMl;
+                matches[mnum].off = ZSTD_REP_MOVE_OPT + current - matchIndex3;
+                matches[mnum].len = (U32)currentMl;
+                mnum++;
+                if (currentMl > ZSTD_OPT_NUM) goto update;
+                if (ip+currentMl == iLimit) goto update; /* best possible, and avoid read overflow*/
+            }
+        }
+    }
+
+    hashTable[h] = current;   /* Update Hash Table */
+
+    while (nbCompares-- && (matchIndex > windowLow)) {
+        U32* nextPtr = bt + 2*(matchIndex & btMask);
+        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
+        const BYTE* match;
+
+        if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
+            match = base + matchIndex;
+            if (match[matchLength] == ip[matchLength]) {
+                matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iLimit) +1;
+            }
+        } else {
+            match = dictBase + matchIndex;
+            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
+            if (matchIndex+matchLength >= dictLimit)
+                match = base + matchIndex;   /* to prepare for next usage of match[matchLength] */
+        }
+
+        if (matchLength > bestLength) {
+            if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength;
+            bestLength = matchLength;
+            matches[mnum].off = ZSTD_REP_MOVE_OPT + current - matchIndex;
+            matches[mnum].len = (U32)matchLength;
+            mnum++;
+            if (matchLength > ZSTD_OPT_NUM) break;
+            if (ip+matchLength == iLimit)   /* equal : no way to know if inf or sup */
+                break;   /* drop, to guarantee consistency (miss a little bit of compression) */
+        }
+
+        if (match[matchLength] < ip[matchLength]) {
+            /* match is smaller than current */
+            *smallerPtr = matchIndex;             /* update smaller idx */
+            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
+            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
+            smallerPtr = nextPtr+1;               /* new "smaller" => larger of match */
+            matchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
+        } else {
+            /* match is larger than current */
+            *largerPtr = matchIndex;
+            commonLengthLarger = matchLength;
+            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
+            largerPtr = nextPtr;
+            matchIndex = nextPtr[0];
+    }   }
+
+    *smallerPtr = *largerPtr = 0;
+
+update:
+    zc->nextToUpdate = (matchEndIdx > current + 8) ? matchEndIdx - 8 : current+1;
+    return mnum;
+}
+
+
+/** Tree updater, providing best match */
+static U32 ZSTD_BtGetAllMatches (
+                        ZSTD_CCtx* zc,
+                        const BYTE* const ip, const BYTE* const iLimit,
+                        const U32 maxNbAttempts, const U32 mls, ZSTD_match_t* matches, const U32 minMatchLen)
+{
+    if (ip < zc->base + zc->nextToUpdate) return 0;   /* skipped area */
+    ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
+    return ZSTD_insertBtAndGetAllMatches(zc, ip, iLimit, maxNbAttempts, mls, 0, matches, minMatchLen);
+}
+
+
+static U32 ZSTD_BtGetAllMatches_selectMLS (
+                        ZSTD_CCtx* zc,   /* Index table will be updated */
+                        const BYTE* ip, const BYTE* const iHighLimit,
+                        const U32 maxNbAttempts, const U32 matchLengthSearch, ZSTD_match_t* matches, const U32 minMatchLen)
+{
+    switch(matchLengthSearch)
+    {
+    case 3 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 3, matches, minMatchLen);
+    default :
+    case 4 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 4, matches, minMatchLen);
+    case 5 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 5, matches, minMatchLen);
+    case 6 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 6, matches, minMatchLen);
+    }
+}
+
+/** Tree updater, providing best match */
+static U32 ZSTD_BtGetAllMatches_extDict (
+                        ZSTD_CCtx* zc,
+                        const BYTE* const ip, const BYTE* const iLimit,
+                        const U32 maxNbAttempts, const U32 mls, ZSTD_match_t* matches, const U32 minMatchLen)
+{
+    if (ip < zc->base + zc->nextToUpdate) return 0;   /* skipped area */
+    ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
+    return ZSTD_insertBtAndGetAllMatches(zc, ip, iLimit, maxNbAttempts, mls, 1, matches, minMatchLen);
+}
+
+
+static U32 ZSTD_BtGetAllMatches_selectMLS_extDict (
+                        ZSTD_CCtx* zc,   /* Index table will be updated */
+                        const BYTE* ip, const BYTE* const iHighLimit,
+                        const U32 maxNbAttempts, const U32 matchLengthSearch, ZSTD_match_t* matches, const U32 minMatchLen)
+{
+    switch(matchLengthSearch)
+    {
+    case 3 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 3, matches, minMatchLen);
+    default :
+    case 4 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 4, matches, minMatchLen);
+    case 5 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 5, matches, minMatchLen);
+    case 6 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 6, matches, minMatchLen);
+    }
+}
+
+
+/*-*******************************
+*  Optimal parser
+*********************************/
+FORCE_INLINE
+void ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
+                                    const void* src, size_t srcSize, const int ultra)
+{
+    seqStore_t* seqStorePtr = &(ctx->seqStore);
+    const BYTE* const istart = (const BYTE*)src;
+    const BYTE* ip = istart;
+    const BYTE* anchor = istart;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* const ilimit = iend - 8;
+    const BYTE* const base = ctx->base;
+    const BYTE* const prefixStart = base + ctx->dictLimit;
+
+    const U32 maxSearches = 1U << ctx->params.cParams.searchLog;
+    const U32 sufficient_len = ctx->params.cParams.targetLength;
+    const U32 mls = ctx->params.cParams.searchLength;
+    const U32 minMatch = (ctx->params.cParams.searchLength == 3) ? 3 : 4;
+
+    ZSTD_optimal_t* opt = seqStorePtr->priceTable;
+    ZSTD_match_t* matches = seqStorePtr->matchTable;
+    const BYTE* inr;
+    U32 offset, rep[ZSTD_REP_NUM];
+
+    /* init */
+    ctx->nextToUpdate3 = ctx->nextToUpdate;
+    ZSTD_rescaleFreqs(seqStorePtr);
+    ip += (ip==prefixStart);
+    { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) rep[i]=ctx->rep[i]; }
+
+    /* Match Loop */
+    while (ip < ilimit) {
+        U32 cur, match_num, last_pos, litlen, price;
+        U32 u, mlen, best_mlen, best_off, litLength;
+        memset(opt, 0, sizeof(ZSTD_optimal_t));
+        last_pos = 0;
+        litlen = (U32)(ip - anchor);
+
+        /* check repCode */
+        {   U32 i, last_i = ZSTD_REP_CHECK + (ip==anchor);
+            for (i=(ip == anchor); i<last_i; i++) {
+                const S32 repCur = ((i==ZSTD_REP_MOVE_OPT) && (ip==anchor)) ? (rep[0] - 1) : rep[i];
+                if ( (repCur > 0) && (repCur < (S32)(ip-prefixStart))
+                    && (MEM_readMINMATCH(ip, minMatch) == MEM_readMINMATCH(ip - repCur, minMatch))) {
+                    mlen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repCur, iend) + minMatch;
+                    if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
+                        best_mlen = mlen; best_off = i; cur = 0; last_pos = 1;
+                        goto _storeSequence;
+                    }
+                    best_off = i - (ip == anchor);
+                    do {
+                        price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
+                        if (mlen > last_pos || price < opt[mlen].price)
+                            SET_PRICE(mlen, mlen, i, litlen, price);   /* note : macro modifies last_pos */
+                        mlen--;
+                    } while (mlen >= minMatch);
+        }   }   }
+
+        match_num = ZSTD_BtGetAllMatches_selectMLS(ctx, ip, iend, maxSearches, mls, matches, minMatch);
+
+        if (!last_pos && !match_num) { ip++; continue; }
+
+        if (match_num && (matches[match_num-1].len > sufficient_len || matches[match_num-1].len >= ZSTD_OPT_NUM)) {
+            best_mlen = matches[match_num-1].len;
+            best_off = matches[match_num-1].off;
+            cur = 0;
+            last_pos = 1;
+            goto _storeSequence;
+        }
+
+        /* set prices using matches at position = 0 */
+        best_mlen = (last_pos) ? last_pos : minMatch;
+        for (u = 0; u < match_num; u++) {
+            mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
+            best_mlen = matches[u].len;
+            while (mlen <= best_mlen) {
+                price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
+                if (mlen > last_pos || price < opt[mlen].price)
+                    SET_PRICE(mlen, mlen, matches[u].off, litlen, price);   /* note : macro modifies last_pos */
+                mlen++;
+        }   }
+
+        if (last_pos < minMatch) { ip++; continue; }
+
+        /* initialize opt[0] */
+        { U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
+        opt[0].mlen = 1;
+        opt[0].litlen = litlen;
+
+         /* check further positions */
+        for (cur = 1; cur <= last_pos; cur++) {
+           inr = ip + cur;
+
+           if (opt[cur-1].mlen == 1) {
+                litlen = opt[cur-1].litlen + 1;
+                if (cur > litlen) {
+                    price = opt[cur - litlen].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr-litlen);
+                } else
+                    price = ZSTD_getLiteralPrice(seqStorePtr, litlen, anchor);
+           } else {
+                litlen = 1;
+                price = opt[cur - 1].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr-1);
+           }
+
+           if (cur > last_pos || price <= opt[cur].price)
+                SET_PRICE(cur, 1, 0, litlen, price);
+
+           if (cur == last_pos) break;
+
+           if (inr > ilimit)  /* last match must start at a minimum distance of 8 from oend */
+               continue;
+
+           mlen = opt[cur].mlen;
+           if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
+                opt[cur].rep[2] = opt[cur-mlen].rep[1];
+                opt[cur].rep[1] = opt[cur-mlen].rep[0];
+                opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
+           } else {
+                opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur-mlen].rep[1] : opt[cur-mlen].rep[2];
+                opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur-mlen].rep[0] : opt[cur-mlen].rep[1];
+                opt[cur].rep[0] = ((opt[cur].off==ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur-mlen].rep[0] - 1) : (opt[cur-mlen].rep[opt[cur].off]);
+           }
+
+            best_mlen = minMatch;
+            {   U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
+                for (i=(opt[cur].mlen != 1); i<last_i; i++) {  /* check rep */
+                    const S32 repCur = ((i==ZSTD_REP_MOVE_OPT) && (opt[cur].mlen != 1)) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
+                    if ( (repCur > 0) && (repCur < (S32)(inr-prefixStart))
+                       && (MEM_readMINMATCH(inr, minMatch) == MEM_readMINMATCH(inr - repCur, minMatch))) {
+                       mlen = (U32)ZSTD_count(inr+minMatch, inr+minMatch - repCur, iend) + minMatch;
+
+                       if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
+                            best_mlen = mlen; best_off = i; last_pos = cur + 1;
+                            goto _storeSequence;
+                       }
+
+                       best_off = i - (opt[cur].mlen != 1);
+                       if (mlen > best_mlen) best_mlen = mlen;
+
+                       do {
+                           if (opt[cur].mlen == 1) {
+                                litlen = opt[cur].litlen;
+                                if (cur > litlen) {
+                                    price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, inr-litlen, best_off, mlen - MINMATCH, ultra);
+                                } else
+                                    price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
+                            } else {
+                                litlen = 0;
+                                price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, best_off, mlen - MINMATCH, ultra);
+                            }
+
+                            if (cur + mlen > last_pos || price <= opt[cur + mlen].price)
+                                SET_PRICE(cur + mlen, mlen, i, litlen, price);
+                            mlen--;
+                        } while (mlen >= minMatch);
+            }   }   }
+
+            match_num = ZSTD_BtGetAllMatches_selectMLS(ctx, inr, iend, maxSearches, mls, matches, best_mlen);
+
+            if (match_num > 0 && (matches[match_num-1].len > sufficient_len || cur + matches[match_num-1].len >= ZSTD_OPT_NUM)) {
+                best_mlen = matches[match_num-1].len;
+                best_off = matches[match_num-1].off;
+                last_pos = cur + 1;
+                goto _storeSequence;
+            }
+
+            /* set prices using matches at position = cur */
+            for (u = 0; u < match_num; u++) {
+                mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
+                best_mlen = matches[u].len;
+
+                while (mlen <= best_mlen) {
+                    if (opt[cur].mlen == 1) {
+                        litlen = opt[cur].litlen;
+                        if (cur > litlen)
+                            price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip+cur-litlen, matches[u].off-1, mlen - MINMATCH, ultra);
+                        else
+                            price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
+                    } else {
+                        litlen = 0;
+                        price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off-1, mlen - MINMATCH, ultra);
+                    }
+
+                    if (cur + mlen > last_pos || (price < opt[cur + mlen].price))
+                        SET_PRICE(cur + mlen, mlen, matches[u].off, litlen, price);
+
+                    mlen++;
+        }   }   }
+
+        best_mlen = opt[last_pos].mlen;
+        best_off = opt[last_pos].off;
+        cur = last_pos - best_mlen;
+
+        /* store sequence */
+_storeSequence:   /* cur, last_pos, best_mlen, best_off have to be set */
+        opt[0].mlen = 1;
+
+        while (1) {
+            mlen = opt[cur].mlen;
+            offset = opt[cur].off;
+            opt[cur].mlen = best_mlen;
+            opt[cur].off = best_off;
+            best_mlen = mlen;
+            best_off = offset;
+            if (mlen > cur) break;
+            cur -= mlen;
+        }
+
+        for (u = 0; u <= last_pos;) {
+            u += opt[u].mlen;
+        }
+
+        for (cur=0; cur < last_pos; ) {
+            mlen = opt[cur].mlen;
+            if (mlen == 1) { ip++; cur++; continue; }
+            offset = opt[cur].off;
+            cur += mlen;
+            litLength = (U32)(ip - anchor);
+
+            if (offset > ZSTD_REP_MOVE_OPT) {
+                rep[2] = rep[1];
+                rep[1] = rep[0];
+                rep[0] = offset - ZSTD_REP_MOVE_OPT;
+                offset--;
+            } else {
+                if (offset != 0) {
+                    best_off = ((offset==ZSTD_REP_MOVE_OPT) && (litLength==0)) ? (rep[0] - 1) : (rep[offset]);
+                    if (offset != 1) rep[2] = rep[1];
+                    rep[1] = rep[0];
+                    rep[0] = best_off;
+                }
+                if (litLength==0) offset--;
+            }
+
+            ZSTD_updatePrice(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
+            ZSTD_storeSeq(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
+            anchor = ip = ip + mlen;
+    }    }   /* for (cur=0; cur < last_pos; ) */
+
+    /* Save reps for next block */
+    { int i; for (i=0; i<ZSTD_REP_NUM; i++) ctx->savedRep[i] = rep[i]; }
+
+    /* Last Literals */
+    {   size_t const lastLLSize = iend - anchor;
+        memcpy(seqStorePtr->lit, anchor, lastLLSize);
+        seqStorePtr->lit += lastLLSize;
+    }
+}
+
+
+FORCE_INLINE
+void ZSTD_compressBlock_opt_extDict_generic(ZSTD_CCtx* ctx,
+                                     const void* src, size_t srcSize, const int ultra)
+{
+    seqStore_t* seqStorePtr = &(ctx->seqStore);
+    const BYTE* const istart = (const BYTE*)src;
+    const BYTE* ip = istart;
+    const BYTE* anchor = istart;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* const ilimit = iend - 8;
+    const BYTE* const base = ctx->base;
+    const U32 lowestIndex = ctx->lowLimit;
+    const U32 dictLimit = ctx->dictLimit;
+    const BYTE* const prefixStart = base + dictLimit;
+    const BYTE* const dictBase = ctx->dictBase;
+    const BYTE* const dictEnd  = dictBase + dictLimit;
+
+    const U32 maxSearches = 1U << ctx->params.cParams.searchLog;
+    const U32 sufficient_len = ctx->params.cParams.targetLength;
+    const U32 mls = ctx->params.cParams.searchLength;
+    const U32 minMatch = (ctx->params.cParams.searchLength == 3) ? 3 : 4;
+
+    ZSTD_optimal_t* opt = seqStorePtr->priceTable;
+    ZSTD_match_t* matches = seqStorePtr->matchTable;
+    const BYTE* inr;
+
+    /* init */
+    U32 offset, rep[ZSTD_REP_NUM];
+    { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) rep[i]=ctx->rep[i]; }
+
+    ctx->nextToUpdate3 = ctx->nextToUpdate;
+    ZSTD_rescaleFreqs(seqStorePtr);
+    ip += (ip==prefixStart);
+
+    /* Match Loop */
+    while (ip < ilimit) {
+        U32 cur, match_num, last_pos, litlen, price;
+        U32 u, mlen, best_mlen, best_off, litLength;
+        U32 current = (U32)(ip-base);
+        memset(opt, 0, sizeof(ZSTD_optimal_t));
+        last_pos = 0;
+        opt[0].litlen = (U32)(ip - anchor);
+
+        /* check repCode */
+        {   U32 i, last_i = ZSTD_REP_CHECK + (ip==anchor);
+            for (i = (ip==anchor); i<last_i; i++) {
+                const S32 repCur = ((i==ZSTD_REP_MOVE_OPT) && (ip==anchor)) ? (rep[0] - 1) : rep[i];
+                const U32 repIndex = (U32)(current - repCur);
+                const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+                const BYTE* const repMatch = repBase + repIndex;
+                if ( (repCur > 0 && repCur <= (S32)current)
+                   && (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex>lowestIndex))  /* intentional overflow */
+                   && (MEM_readMINMATCH(ip, minMatch) == MEM_readMINMATCH(repMatch, minMatch)) ) {
+                    /* repcode detected we should take it */
+                    const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+                    mlen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iend, repEnd, prefixStart) + minMatch;
+
+                    if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
+                        best_mlen = mlen; best_off = i; cur = 0; last_pos = 1;
+                        goto _storeSequence;
+                    }
+
+                    best_off = i - (ip==anchor);
+                    litlen = opt[0].litlen;
+                    do {
+                        price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
+                        if (mlen > last_pos || price < opt[mlen].price)
+                            SET_PRICE(mlen, mlen, i, litlen, price);   /* note : macro modifies last_pos */
+                        mlen--;
+                    } while (mlen >= minMatch);
+        }   }   }
+
+        match_num = ZSTD_BtGetAllMatches_selectMLS_extDict(ctx, ip, iend, maxSearches, mls, matches, minMatch);  /* first search (depth 0) */
+
+        if (!last_pos && !match_num) { ip++; continue; }
+
+        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
+        opt[0].mlen = 1;
+
+        if (match_num && (matches[match_num-1].len > sufficient_len || matches[match_num-1].len >= ZSTD_OPT_NUM)) {
+            best_mlen = matches[match_num-1].len;
+            best_off = matches[match_num-1].off;
+            cur = 0;
+            last_pos = 1;
+            goto _storeSequence;
+        }
+
+        best_mlen = (last_pos) ? last_pos : minMatch;
+
+        /* set prices using matches at position = 0 */
+        for (u = 0; u < match_num; u++) {
+            mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
+            best_mlen = matches[u].len;
+            litlen = opt[0].litlen;
+            while (mlen <= best_mlen) {
+                price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
+                if (mlen > last_pos || price < opt[mlen].price)
+                    SET_PRICE(mlen, mlen, matches[u].off, litlen, price);
+                mlen++;
+        }   }
+
+        if (last_pos < minMatch) {
+            ip++; continue;
+        }
+
+        /* check further positions */
+        for (cur = 1; cur <= last_pos; cur++) {
+            inr = ip + cur;
+
+            if (opt[cur-1].mlen == 1) {
+                litlen = opt[cur-1].litlen + 1;
+                if (cur > litlen) {
+                    price = opt[cur - litlen].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr-litlen);
+                } else
+                    price = ZSTD_getLiteralPrice(seqStorePtr, litlen, anchor);
+            } else {
+                litlen = 1;
+                price = opt[cur - 1].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr-1);
+            }
+
+            if (cur > last_pos || price <= opt[cur].price)
+                SET_PRICE(cur, 1, 0, litlen, price);
+
+            if (cur == last_pos) break;
+
+            if (inr > ilimit)  /* last match must start at a minimum distance of 8 from oend */
+                continue;
+
+            mlen = opt[cur].mlen;
+            if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
+                opt[cur].rep[2] = opt[cur-mlen].rep[1];
+                opt[cur].rep[1] = opt[cur-mlen].rep[0];
+                opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
+            } else {
+                opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur-mlen].rep[1] : opt[cur-mlen].rep[2];
+                opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur-mlen].rep[0] : opt[cur-mlen].rep[1];
+                opt[cur].rep[0] = ((opt[cur].off==ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur-mlen].rep[0] - 1) : (opt[cur-mlen].rep[opt[cur].off]);
+            }
+
+            best_mlen = minMatch;
+            {   U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
+                for (i = (mlen != 1); i<last_i; i++) {
+                    const S32 repCur = ((i==ZSTD_REP_MOVE_OPT) && (opt[cur].mlen != 1)) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
+                    const U32 repIndex = (U32)(current+cur - repCur);
+                    const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
+                    const BYTE* const repMatch = repBase + repIndex;
+                    if ( (repCur > 0 && repCur <= (S32)(current+cur))
+                      && (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex>lowestIndex))  /* intentional overflow */
+                      && (MEM_readMINMATCH(inr, minMatch) == MEM_readMINMATCH(repMatch, minMatch)) ) {
+                        /* repcode detected */
+                        const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
+                        mlen = (U32)ZSTD_count_2segments(inr+minMatch, repMatch+minMatch, iend, repEnd, prefixStart) + minMatch;
+
+                        if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
+                            best_mlen = mlen; best_off = i; last_pos = cur + 1;
+                            goto _storeSequence;
+                        }
+
+                        best_off = i - (opt[cur].mlen != 1);
+                        if (mlen > best_mlen) best_mlen = mlen;
+
+                        do {
+                            if (opt[cur].mlen == 1) {
+                                litlen = opt[cur].litlen;
+                                if (cur > litlen) {
+                                    price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, inr-litlen, best_off, mlen - MINMATCH, ultra);
+                                } else
+                                    price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
+                            } else {
+                                litlen = 0;
+                                price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, best_off, mlen - MINMATCH, ultra);
+                            }
+
+                            if (cur + mlen > last_pos || price <= opt[cur + mlen].price)
+                                SET_PRICE(cur + mlen, mlen, i, litlen, price);
+                            mlen--;
+                        } while (mlen >= minMatch);
+            }   }   }
+
+            match_num = ZSTD_BtGetAllMatches_selectMLS_extDict(ctx, inr, iend, maxSearches, mls, matches, minMatch);
+
+            if (match_num > 0 && matches[match_num-1].len > sufficient_len) {
+                best_mlen = matches[match_num-1].len;
+                best_off = matches[match_num-1].off;
+                last_pos = cur + 1;
+                goto _storeSequence;
+            }
+
+            /* set prices using matches at position = cur */
+            for (u = 0; u < match_num; u++) {
+                mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
+                best_mlen = (cur + matches[u].len < ZSTD_OPT_NUM) ? matches[u].len : ZSTD_OPT_NUM - cur;
+
+                while (mlen <= best_mlen) {
+                    if (opt[cur].mlen == 1) {
+                        litlen = opt[cur].litlen;
+                        if (cur > litlen)
+                            price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip+cur-litlen, matches[u].off-1, mlen - MINMATCH, ultra);
+                        else
+                            price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
+                    } else {
+                        litlen = 0;
+                        price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off-1, mlen - MINMATCH, ultra);
+                    }
+
+                    if (cur + mlen > last_pos || (price < opt[cur + mlen].price))
+                        SET_PRICE(cur + mlen, mlen, matches[u].off, litlen, price);
+
+                    mlen++;
+        }   }   }   /* for (cur = 1; cur <= last_pos; cur++) */
+
+        best_mlen = opt[last_pos].mlen;
+        best_off = opt[last_pos].off;
+        cur = last_pos - best_mlen;
+
+        /* store sequence */
+_storeSequence:   /* cur, last_pos, best_mlen, best_off have to be set */
+        opt[0].mlen = 1;
+
+        while (1) {
+            mlen = opt[cur].mlen;
+            offset = opt[cur].off;
+            opt[cur].mlen = best_mlen;
+            opt[cur].off = best_off;
+            best_mlen = mlen;
+            best_off = offset;
+            if (mlen > cur) break;
+            cur -= mlen;
+        }
+
+        for (u = 0; u <= last_pos; ) {
+            u += opt[u].mlen;
+        }
+
+        for (cur=0; cur < last_pos; ) {
+            mlen = opt[cur].mlen;
+            if (mlen == 1) { ip++; cur++; continue; }
+            offset = opt[cur].off;
+            cur += mlen;
+            litLength = (U32)(ip - anchor);
+
+            if (offset > ZSTD_REP_MOVE_OPT) {
+                rep[2] = rep[1];
+                rep[1] = rep[0];
+                rep[0] = offset - ZSTD_REP_MOVE_OPT;
+                offset--;
+            } else {
+                if (offset != 0) {
+                    best_off = ((offset==ZSTD_REP_MOVE_OPT) && (litLength==0)) ? (rep[0] - 1) : (rep[offset]);
+                    if (offset != 1) rep[2] = rep[1];
+                    rep[1] = rep[0];
+                    rep[0] = best_off;
+                }
+
+                if (litLength==0) offset--;
+            }
+
+            ZSTD_updatePrice(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
+            ZSTD_storeSeq(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
+            anchor = ip = ip + mlen;
+    }    }   /* for (cur=0; cur < last_pos; ) */
+
+    /* Save reps for next block */
+    { int i; for (i=0; i<ZSTD_REP_NUM; i++) ctx->savedRep[i] = rep[i]; }
+
+    /* Last Literals */
+    {   size_t lastLLSize = iend - anchor;
+        memcpy(seqStorePtr->lit, anchor, lastLLSize);
+        seqStorePtr->lit += lastLLSize;
+    }
+}
+
+#endif  /* ZSTD_OPT_H_91842398743 */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/decompress/huf_decompress.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,883 @@
+/* ******************************************************************
+   Huffman decoder, part of New Generation Entropy library
+   Copyright (C) 2013-2016, Yann Collet.
+
+   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions are
+   met:
+
+       * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above
+   copyright notice, this list of conditions and the following disclaimer
+   in the documentation and/or other materials provided with the
+   distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+    You can contact the author at :
+    - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
+    - Public forum : https://groups.google.com/forum/#!forum/lz4c
+****************************************************************** */
+
+/* **************************************************************
+*  Compiler specifics
+****************************************************************/
+#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+/* inline is defined */
+#elif defined(_MSC_VER) || defined(__GNUC__)
+#  define inline __inline
+#else
+#  define inline /* disable inline */
+#endif
+
+#ifdef _MSC_VER    /* Visual Studio */
+#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
+#endif
+
+
+/* **************************************************************
+*  Dependencies
+****************************************************************/
+#include <string.h>     /* memcpy, memset */
+#include "bitstream.h"  /* BIT_* */
+#include "fse.h"        /* header compression */
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+
+
+/* **************************************************************
+*  Error Management
+****************************************************************/
+#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
+
+
+/*-***************************/
+/*  generic DTableDesc       */
+/*-***************************/
+
+typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
+
+static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
+{
+    DTableDesc dtd;
+    memcpy(&dtd, table, sizeof(dtd));
+    return dtd;
+}
+
+
+/*-***************************/
+/*  single-symbol decoding   */
+/*-***************************/
+
+typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2;   /* single-symbol decoding */
+
+size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize)
+{
+    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
+    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
+    U32 tableLog = 0;
+    U32 nbSymbols = 0;
+    size_t iSize;
+    void* const dtPtr = DTable + 1;
+    HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
+
+    HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
+    /* memset(huffWeight, 0, sizeof(huffWeight)); */   /* is not necessary, even though some analyzer complain ... */
+
+    iSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
+    if (HUF_isError(iSize)) return iSize;
+
+    /* Table header */
+    {   DTableDesc dtd = HUF_getDTableDesc(DTable);
+        if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge);   /* DTable too small, huffman tree cannot fit in */
+        dtd.tableType = 0;
+        dtd.tableLog = (BYTE)tableLog;
+        memcpy(DTable, &dtd, sizeof(dtd));
+    }
+
+    /* Prepare ranks */
+    {   U32 n, nextRankStart = 0;
+        for (n=1; n<tableLog+1; n++) {
+            U32 current = nextRankStart;
+            nextRankStart += (rankVal[n] << (n-1));
+            rankVal[n] = current;
+    }   }
+
+    /* fill DTable */
+    {   U32 n;
+        for (n=0; n<nbSymbols; n++) {
+            U32 const w = huffWeight[n];
+            U32 const length = (1 << w) >> 1;
+            U32 i;
+            HUF_DEltX2 D;
+            D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
+            for (i = rankVal[w]; i < rankVal[w] + length; i++)
+                dt[i] = D;
+            rankVal[w] += length;
+    }   }
+
+    return iSize;
+}
+
+
+static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
+{
+    size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
+    BYTE const c = dt[val].byte;
+    BIT_skipBits(Dstream, dt[val].nbBits);
+    return c;
+}
+
+#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
+    *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
+    if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
+        HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
+    if (MEM_64bits()) \
+        HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
+
+static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
+{
+    BYTE* const pStart = p;
+
+    /* up to 4 symbols at a time */
+    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) {
+        HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+        HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
+        HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
+        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+    }
+
+    /* closer to the end */
+    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
+        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+    /* no more data to retrieve from bitstream, hence no need to reload */
+    while (p < pEnd)
+        HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
+
+    return pEnd-pStart;
+}
+
+static size_t HUF_decompress1X2_usingDTable_internal(
+          void* dst,  size_t dstSize,
+    const void* cSrc, size_t cSrcSize,
+    const HUF_DTable* DTable)
+{
+    BYTE* op = (BYTE*)dst;
+    BYTE* const oend = op + dstSize;
+    const void* dtPtr = DTable + 1;
+    const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
+    BIT_DStream_t bitD;
+    DTableDesc const dtd = HUF_getDTableDesc(DTable);
+    U32 const dtLog = dtd.tableLog;
+
+    { size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
+      if (HUF_isError(errorCode)) return errorCode; }
+
+    HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);
+
+    /* check */
+    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+    return dstSize;
+}
+
+size_t HUF_decompress1X2_usingDTable(
+          void* dst,  size_t dstSize,
+    const void* cSrc, size_t cSrcSize,
+    const HUF_DTable* DTable)
+{
+    DTableDesc dtd = HUF_getDTableDesc(DTable);
+    if (dtd.tableType != 0) return ERROR(GENERIC);
+    return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+
+size_t HUF_decompress1X2_DCtx (HUF_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    const BYTE* ip = (const BYTE*) cSrc;
+
+    size_t const hSize = HUF_readDTableX2 (DCtx, cSrc, cSrcSize);
+    if (HUF_isError(hSize)) return hSize;
+    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+    ip += hSize; cSrcSize -= hSize;
+
+    return HUF_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
+}
+
+size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
+    return HUF_decompress1X2_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+
+static size_t HUF_decompress4X2_usingDTable_internal(
+          void* dst,  size_t dstSize,
+    const void* cSrc, size_t cSrcSize,
+    const HUF_DTable* DTable)
+{
+    /* Check */
+    if (cSrcSize < 10) return ERROR(corruption_detected);  /* strict minimum : jump table + 1 byte per stream */
+
+    {   const BYTE* const istart = (const BYTE*) cSrc;
+        BYTE* const ostart = (BYTE*) dst;
+        BYTE* const oend = ostart + dstSize;
+        const void* const dtPtr = DTable + 1;
+        const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
+
+        /* Init */
+        BIT_DStream_t bitD1;
+        BIT_DStream_t bitD2;
+        BIT_DStream_t bitD3;
+        BIT_DStream_t bitD4;
+        size_t const length1 = MEM_readLE16(istart);
+        size_t const length2 = MEM_readLE16(istart+2);
+        size_t const length3 = MEM_readLE16(istart+4);
+        size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
+        const BYTE* const istart1 = istart + 6;  /* jumpTable */
+        const BYTE* const istart2 = istart1 + length1;
+        const BYTE* const istart3 = istart2 + length2;
+        const BYTE* const istart4 = istart3 + length3;
+        const size_t segmentSize = (dstSize+3) / 4;
+        BYTE* const opStart2 = ostart + segmentSize;
+        BYTE* const opStart3 = opStart2 + segmentSize;
+        BYTE* const opStart4 = opStart3 + segmentSize;
+        BYTE* op1 = ostart;
+        BYTE* op2 = opStart2;
+        BYTE* op3 = opStart3;
+        BYTE* op4 = opStart4;
+        U32 endSignal;
+        DTableDesc const dtd = HUF_getDTableDesc(DTable);
+        U32 const dtLog = dtd.tableLog;
+
+        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
+        { size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
+          if (HUF_isError(errorCode)) return errorCode; }
+        { size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
+          if (HUF_isError(errorCode)) return errorCode; }
+        { size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
+          if (HUF_isError(errorCode)) return errorCode; }
+        { size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
+          if (HUF_isError(errorCode)) return errorCode; }
+
+        /* 16-32 symbols per loop (4-8 symbols per stream) */
+        endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+        for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
+            HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+            HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+            HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+            HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+            HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
+            HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
+            HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
+            HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
+            HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
+            HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
+            HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
+            HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
+            HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
+            HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
+            HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
+            HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
+            endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+        }
+
+        /* check corruption */
+        if (op1 > opStart2) return ERROR(corruption_detected);
+        if (op2 > opStart3) return ERROR(corruption_detected);
+        if (op3 > opStart4) return ERROR(corruption_detected);
+        /* note : op4 supposed already verified within main loop */
+
+        /* finish bitStreams one by one */
+        HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
+        HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
+        HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
+        HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);
+
+        /* check */
+        endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+        if (!endSignal) return ERROR(corruption_detected);
+
+        /* decoded size */
+        return dstSize;
+    }
+}
+
+
+size_t HUF_decompress4X2_usingDTable(
+          void* dst,  size_t dstSize,
+    const void* cSrc, size_t cSrcSize,
+    const HUF_DTable* DTable)
+{
+    DTableDesc dtd = HUF_getDTableDesc(DTable);
+    if (dtd.tableType != 0) return ERROR(GENERIC);
+    return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+
+
+size_t HUF_decompress4X2_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    const BYTE* ip = (const BYTE*) cSrc;
+
+    size_t const hSize = HUF_readDTableX2 (dctx, cSrc, cSrcSize);
+    if (HUF_isError(hSize)) return hSize;
+    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+    ip += hSize; cSrcSize -= hSize;
+
+    return HUF_decompress4X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, dctx);
+}
+
+size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
+    return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+
+/* *************************/
+/* double-symbols decoding */
+/* *************************/
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4;  /* double-symbols decoding */
+
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
+
+static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
+                           const U32* rankValOrigin, const int minWeight,
+                           const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
+                           U32 nbBitsBaseline, U16 baseSeq)
+{
+    HUF_DEltX4 DElt;
+    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
+
+    /* get pre-calculated rankVal */
+    memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+    /* fill skipped values */
+    if (minWeight>1) {
+        U32 i, skipSize = rankVal[minWeight];
+        MEM_writeLE16(&(DElt.sequence), baseSeq);
+        DElt.nbBits   = (BYTE)(consumed);
+        DElt.length   = 1;
+        for (i = 0; i < skipSize; i++)
+            DTable[i] = DElt;
+    }
+
+    /* fill DTable */
+    {   U32 s; for (s=0; s<sortedListSize; s++) {   /* note : sortedSymbols already skipped */
+            const U32 symbol = sortedSymbols[s].symbol;
+            const U32 weight = sortedSymbols[s].weight;
+            const U32 nbBits = nbBitsBaseline - weight;
+            const U32 length = 1 << (sizeLog-nbBits);
+            const U32 start = rankVal[weight];
+            U32 i = start;
+            const U32 end = start + length;
+
+            MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
+            DElt.nbBits = (BYTE)(nbBits + consumed);
+            DElt.length = 2;
+            do { DTable[i++] = DElt; } while (i<end);   /* since length >= 1 */
+
+            rankVal[weight] += length;
+    }   }
+}
+
+typedef U32 rankVal_t[HUF_TABLELOG_ABSOLUTEMAX][HUF_TABLELOG_ABSOLUTEMAX + 1];
+
+static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
+                           const sortedSymbol_t* sortedList, const U32 sortedListSize,
+                           const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
+                           const U32 nbBitsBaseline)
+{
+    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
+    const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
+    const U32 minBits  = nbBitsBaseline - maxWeight;
+    U32 s;
+
+    memcpy(rankVal, rankValOrigin, sizeof(rankVal));
+
+    /* fill DTable */
+    for (s=0; s<sortedListSize; s++) {
+        const U16 symbol = sortedList[s].symbol;
+        const U32 weight = sortedList[s].weight;
+        const U32 nbBits = nbBitsBaseline - weight;
+        const U32 start = rankVal[weight];
+        const U32 length = 1 << (targetLog-nbBits);
+
+        if (targetLog-nbBits >= minBits) {   /* enough room for a second symbol */
+            U32 sortedRank;
+            int minWeight = nbBits + scaleLog;
+            if (minWeight < 1) minWeight = 1;
+            sortedRank = rankStart[minWeight];
+            HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
+                           rankValOrigin[nbBits], minWeight,
+                           sortedList+sortedRank, sortedListSize-sortedRank,
+                           nbBitsBaseline, symbol);
+        } else {
+            HUF_DEltX4 DElt;
+            MEM_writeLE16(&(DElt.sequence), symbol);
+            DElt.nbBits = (BYTE)(nbBits);
+            DElt.length = 1;
+            {   U32 const end = start + length;
+                U32 u;
+                for (u = start; u < end; u++) DTable[u] = DElt;
+        }   }
+        rankVal[weight] += length;
+    }
+}
+
+size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize)
+{
+    BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
+    sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
+    U32 rankStats[HUF_TABLELOG_ABSOLUTEMAX + 1] = { 0 };
+    U32 rankStart0[HUF_TABLELOG_ABSOLUTEMAX + 2] = { 0 };
+    U32* const rankStart = rankStart0+1;
+    rankVal_t rankVal;
+    U32 tableLog, maxW, sizeOfSort, nbSymbols;
+    DTableDesc dtd = HUF_getDTableDesc(DTable);
+    U32 const maxTableLog = dtd.maxTableLog;
+    size_t iSize;
+    void* dtPtr = DTable+1;   /* force compiler to avoid strict-aliasing */
+    HUF_DEltX4* const dt = (HUF_DEltX4*)dtPtr;
+
+    HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(HUF_DTable));   /* if compilation fails here, assertion is false */
+    if (maxTableLog > HUF_TABLELOG_ABSOLUTEMAX) return ERROR(tableLog_tooLarge);
+    /* memset(weightList, 0, sizeof(weightList)); */  /* is not necessary, even though some analyzer complain ... */
+
+    iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
+    if (HUF_isError(iSize)) return iSize;
+
+    /* check result */
+    if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */
+
+    /* find maxWeight */
+    for (maxW = tableLog; rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */
+
+    /* Get start index of each weight */
+    {   U32 w, nextRankStart = 0;
+        for (w=1; w<maxW+1; w++) {
+            U32 current = nextRankStart;
+            nextRankStart += rankStats[w];
+            rankStart[w] = current;
+        }
+        rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
+        sizeOfSort = nextRankStart;
+    }
+
+    /* sort symbols by weight */
+    {   U32 s;
+        for (s=0; s<nbSymbols; s++) {
+            U32 const w = weightList[s];
+            U32 const r = rankStart[w]++;
+            sortedSymbol[r].symbol = (BYTE)s;
+            sortedSymbol[r].weight = (BYTE)w;
+        }
+        rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
+    }
+
+    /* Build rankVal */
+    {   U32* const rankVal0 = rankVal[0];
+        {   int const rescale = (maxTableLog-tableLog) - 1;   /* tableLog <= maxTableLog */
+            U32 nextRankVal = 0;
+            U32 w;
+            for (w=1; w<maxW+1; w++) {
+                U32 current = nextRankVal;
+                nextRankVal += rankStats[w] << (w+rescale);
+                rankVal0[w] = current;
+        }   }
+        {   U32 const minBits = tableLog+1 - maxW;
+            U32 consumed;
+            for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
+                U32* const rankValPtr = rankVal[consumed];
+                U32 w;
+                for (w = 1; w < maxW+1; w++) {
+                    rankValPtr[w] = rankVal0[w] >> consumed;
+    }   }   }   }
+
+    HUF_fillDTableX4(dt, maxTableLog,
+                   sortedSymbol, sizeOfSort,
+                   rankStart0, rankVal, maxW,
+                   tableLog+1);
+
+    dtd.tableLog = (BYTE)maxTableLog;
+    dtd.tableType = 1;
+    memcpy(DTable, &dtd, sizeof(dtd));
+    return iSize;
+}
+
+
+static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
+{
+    size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
+    memcpy(op, dt+val, 2);
+    BIT_skipBits(DStream, dt[val].nbBits);
+    return dt[val].length;
+}
+
+static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
+{
+    size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
+    memcpy(op, dt+val, 1);
+    if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
+    else {
+        if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
+            BIT_skipBits(DStream, dt[val].nbBits);
+            if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
+                DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);   /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
+    }   }
+    return 1;
+}
+
+
+#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
+    ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
+    if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
+        ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
+    if (MEM_64bits()) \
+        ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
+
+static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
+{
+    BYTE* const pStart = p;
+
+    /* up to 8 symbols at a time */
+    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
+        HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
+        HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
+        HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
+        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
+    }
+
+    /* closer to end : up to 2 symbols at a time */
+    while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
+        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
+
+    while (p <= pEnd-2)
+        HUF_DECODE_SYMBOLX4_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
+
+    if (p < pEnd)
+        p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
+
+    return p-pStart;
+}
+
+
+static size_t HUF_decompress1X4_usingDTable_internal(
+          void* dst,  size_t dstSize,
+    const void* cSrc, size_t cSrcSize,
+    const HUF_DTable* DTable)
+{
+    BIT_DStream_t bitD;
+
+    /* Init */
+    {   size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
+        if (HUF_isError(errorCode)) return errorCode;
+    }
+
+    /* decode */
+    {   BYTE* const ostart = (BYTE*) dst;
+        BYTE* const oend = ostart + dstSize;
+        const void* const dtPtr = DTable+1;   /* force compiler to not use strict-aliasing */
+        const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
+        DTableDesc const dtd = HUF_getDTableDesc(DTable);
+        HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
+    }
+
+    /* check */
+    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
+
+    /* decoded size */
+    return dstSize;
+}
+
+size_t HUF_decompress1X4_usingDTable(
+          void* dst,  size_t dstSize,
+    const void* cSrc, size_t cSrcSize,
+    const HUF_DTable* DTable)
+{
+    DTableDesc dtd = HUF_getDTableDesc(DTable);
+    if (dtd.tableType != 1) return ERROR(GENERIC);
+    return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+
+size_t HUF_decompress1X4_DCtx (HUF_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    const BYTE* ip = (const BYTE*) cSrc;
+
+    size_t const hSize = HUF_readDTableX4 (DCtx, cSrc, cSrcSize);
+    if (HUF_isError(hSize)) return hSize;
+    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+    ip += hSize; cSrcSize -= hSize;
+
+    return HUF_decompress1X4_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
+}
+
+size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_TABLELOG_MAX);
+    return HUF_decompress1X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+static size_t HUF_decompress4X4_usingDTable_internal(
+          void* dst,  size_t dstSize,
+    const void* cSrc, size_t cSrcSize,
+    const HUF_DTable* DTable)
+{
+    if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
+
+    {   const BYTE* const istart = (const BYTE*) cSrc;
+        BYTE* const ostart = (BYTE*) dst;
+        BYTE* const oend = ostart + dstSize;
+        const void* const dtPtr = DTable+1;
+        const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
+
+        /* Init */
+        BIT_DStream_t bitD1;
+        BIT_DStream_t bitD2;
+        BIT_DStream_t bitD3;
+        BIT_DStream_t bitD4;
+        size_t const length1 = MEM_readLE16(istart);
+        size_t const length2 = MEM_readLE16(istart+2);
+        size_t const length3 = MEM_readLE16(istart+4);
+        size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
+        const BYTE* const istart1 = istart + 6;  /* jumpTable */
+        const BYTE* const istart2 = istart1 + length1;
+        const BYTE* const istart3 = istart2 + length2;
+        const BYTE* const istart4 = istart3 + length3;
+        size_t const segmentSize = (dstSize+3) / 4;
+        BYTE* const opStart2 = ostart + segmentSize;
+        BYTE* const opStart3 = opStart2 + segmentSize;
+        BYTE* const opStart4 = opStart3 + segmentSize;
+        BYTE* op1 = ostart;
+        BYTE* op2 = opStart2;
+        BYTE* op3 = opStart3;
+        BYTE* op4 = opStart4;
+        U32 endSignal;
+        DTableDesc const dtd = HUF_getDTableDesc(DTable);
+        U32 const dtLog = dtd.tableLog;
+
+        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
+        { size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
+          if (HUF_isError(errorCode)) return errorCode; }
+        { size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
+          if (HUF_isError(errorCode)) return errorCode; }
+        { size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
+          if (HUF_isError(errorCode)) return errorCode; }
+        { size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
+          if (HUF_isError(errorCode)) return errorCode; }
+
+        /* 16-32 symbols per loop (4-8 symbols per stream) */
+        endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+        for ( ; (endSignal==BIT_DStream_unfinished) & (op4<(oend-(sizeof(bitD4.bitContainer)-1))) ; ) {
+            HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
+            HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
+            HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
+            HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
+            HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
+            HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
+            HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
+            HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
+            HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
+            HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
+            HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
+            HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
+            HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
+            HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
+            HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
+            HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
+
+            endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
+        }
+
+        /* check corruption */
+        if (op1 > opStart2) return ERROR(corruption_detected);
+        if (op2 > opStart3) return ERROR(corruption_detected);
+        if (op3 > opStart4) return ERROR(corruption_detected);
+        /* note : op4 already verified within main loop */
+
+        /* finish bitStreams one by one */
+        HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
+        HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
+        HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
+        HUF_decodeStreamX4(op4, &bitD4, oend,     dt, dtLog);
+
+        /* check */
+        { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
+          if (!endCheck) return ERROR(corruption_detected); }
+
+        /* decoded size */
+        return dstSize;
+    }
+}
+
+
+size_t HUF_decompress4X4_usingDTable(
+          void* dst,  size_t dstSize,
+    const void* cSrc, size_t cSrcSize,
+    const HUF_DTable* DTable)
+{
+    DTableDesc dtd = HUF_getDTableDesc(DTable);
+    if (dtd.tableType != 1) return ERROR(GENERIC);
+    return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
+}
+
+
+size_t HUF_decompress4X4_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    const BYTE* ip = (const BYTE*) cSrc;
+
+    size_t hSize = HUF_readDTableX4 (dctx, cSrc, cSrcSize);
+    if (HUF_isError(hSize)) return hSize;
+    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
+    ip += hSize; cSrcSize -= hSize;
+
+    return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
+}
+
+size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_TABLELOG_MAX);
+    return HUF_decompress4X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
+}
+
+
+/* ********************************/
+/* Generic decompression selector */
+/* ********************************/
+
+size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
+                                    const void* cSrc, size_t cSrcSize,
+                                    const HUF_DTable* DTable)
+{
+    DTableDesc const dtd = HUF_getDTableDesc(DTable);
+    return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
+                           HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
+}
+
+size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
+                                    const void* cSrc, size_t cSrcSize,
+                                    const HUF_DTable* DTable)
+{
+    DTableDesc const dtd = HUF_getDTableDesc(DTable);
+    return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
+                           HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
+}
+
+
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
+{
+    /* single, double, quad */
+    {{0,0}, {1,1}, {2,2}},  /* Q==0 : impossible */
+    {{0,0}, {1,1}, {2,2}},  /* Q==1 : impossible */
+    {{  38,130}, {1313, 74}, {2151, 38}},   /* Q == 2 : 12-18% */
+    {{ 448,128}, {1353, 74}, {2238, 41}},   /* Q == 3 : 18-25% */
+    {{ 556,128}, {1353, 74}, {2238, 47}},   /* Q == 4 : 25-32% */
+    {{ 714,128}, {1418, 74}, {2436, 53}},   /* Q == 5 : 32-38% */
+    {{ 883,128}, {1437, 74}, {2464, 61}},   /* Q == 6 : 38-44% */
+    {{ 897,128}, {1515, 75}, {2622, 68}},   /* Q == 7 : 44-50% */
+    {{ 926,128}, {1613, 75}, {2730, 75}},   /* Q == 8 : 50-56% */
+    {{ 947,128}, {1729, 77}, {3359, 77}},   /* Q == 9 : 56-62% */
+    {{1107,128}, {2083, 81}, {4006, 84}},   /* Q ==10 : 62-69% */
+    {{1177,128}, {2379, 87}, {4785, 88}},   /* Q ==11 : 69-75% */
+    {{1242,128}, {2415, 93}, {5155, 84}},   /* Q ==12 : 75-81% */
+    {{1349,128}, {2644,106}, {5260,106}},   /* Q ==13 : 81-87% */
+    {{1455,128}, {2422,124}, {4174,124}},   /* Q ==14 : 87-93% */
+    {{ 722,128}, {1891,145}, {1936,146}},   /* Q ==15 : 93-99% */
+};
+
+/** HUF_selectDecoder() :
+*   Tells which decoder is likely to decode faster,
+*   based on a set of pre-determined metrics.
+*   @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
+*   Assumption : 0 < cSrcSize < dstSize <= 128 KB */
+U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
+{
+    /* decoder timing evaluation */
+    U32 const Q = (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 since dstSize > cSrcSize */
+    U32 const D256 = (U32)(dstSize >> 8);
+    U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
+    U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
+    DTime1 += DTime1 >> 3;  /* advantage to algorithm using less memory, for cache eviction */
+
+    return DTime1 < DTime0;
+}
+
+
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
+
+size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    static const decompressionAlgo decompress[2] = { HUF_decompress4X2, HUF_decompress4X4 };
+
+    /* validation checks */
+    if (dstSize == 0) return ERROR(dstSize_tooSmall);
+    if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
+    if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
+    if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
+
+    {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+        return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
+    }
+}
+
+size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    /* validation checks */
+    if (dstSize == 0) return ERROR(dstSize_tooSmall);
+    if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
+    if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
+    if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
+
+    {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+        return algoNb ? HUF_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
+                        HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
+    }
+}
+
+size_t HUF_decompress4X_hufOnly (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    /* validation checks */
+    if (dstSize == 0) return ERROR(dstSize_tooSmall);
+    if ((cSrcSize >= dstSize) || (cSrcSize <= 1)) return ERROR(corruption_detected);   /* invalid */
+
+    {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+        return algoNb ? HUF_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
+                        HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
+    }
+}
+
+size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
+{
+    /* validation checks */
+    if (dstSize == 0) return ERROR(dstSize_tooSmall);
+    if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
+    if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
+    if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
+
+    {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
+        return algoNb ? HUF_decompress1X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
+                        HUF_decompress1X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/decompress/zbuff_decompress.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,252 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+
+
+/* *************************************
+*  Dependencies
+***************************************/
+#include <stdlib.h>
+#include "error_private.h"
+#include "zstd_internal.h"  /* MIN, ZSTD_blockHeaderSize, ZSTD_BLOCKSIZE_MAX */
+#define ZBUFF_STATIC_LINKING_ONLY
+#include "zbuff.h"
+
+
+typedef enum { ZBUFFds_init, ZBUFFds_loadHeader,
+               ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFF_dStage;
+
+/* *** Resource management *** */
+struct ZBUFF_DCtx_s {
+    ZSTD_DCtx* zd;
+    ZSTD_frameParams fParams;
+    ZBUFF_dStage stage;
+    char*  inBuff;
+    size_t inBuffSize;
+    size_t inPos;
+    char*  outBuff;
+    size_t outBuffSize;
+    size_t outStart;
+    size_t outEnd;
+    size_t blockSize;
+    BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
+    size_t lhSize;
+    ZSTD_customMem customMem;
+};   /* typedef'd to ZBUFF_DCtx within "zbuff.h" */
+
+
+ZBUFF_DCtx* ZBUFF_createDCtx(void)
+{
+    return ZBUFF_createDCtx_advanced(defaultCustomMem);
+}
+
+ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem)
+{
+    ZBUFF_DCtx* zbd;
+
+    if (!customMem.customAlloc && !customMem.customFree)
+        customMem = defaultCustomMem;
+
+    if (!customMem.customAlloc || !customMem.customFree)
+        return NULL;
+
+    zbd = (ZBUFF_DCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFF_DCtx));
+    if (zbd==NULL) return NULL;
+    memset(zbd, 0, sizeof(ZBUFF_DCtx));
+    memcpy(&zbd->customMem, &customMem, sizeof(ZSTD_customMem));
+    zbd->zd = ZSTD_createDCtx_advanced(customMem);
+    if (zbd->zd == NULL) { ZBUFF_freeDCtx(zbd); return NULL; }
+    zbd->stage = ZBUFFds_init;
+    return zbd;
+}
+
+size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd)
+{
+    if (zbd==NULL) return 0;   /* support free on null */
+    ZSTD_freeDCtx(zbd->zd);
+    if (zbd->inBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
+    if (zbd->outBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
+    zbd->customMem.customFree(zbd->customMem.opaque, zbd);
+    return 0;
+}
+
+
+/* *** Initialization *** */
+
+size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* zbd, const void* dict, size_t dictSize)
+{
+    zbd->stage = ZBUFFds_loadHeader;
+    zbd->lhSize = zbd->inPos = zbd->outStart = zbd->outEnd = 0;
+    return ZSTD_decompressBegin_usingDict(zbd->zd, dict, dictSize);
+}
+
+size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbd)
+{
+    return ZBUFF_decompressInitDictionary(zbd, NULL, 0);
+}
+
+
+/* internal util function */
+MEM_STATIC size_t ZBUFF_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    size_t const length = MIN(dstCapacity, srcSize);
+    memcpy(dst, src, length);
+    return length;
+}
+
+
+/* *** Decompression *** */
+
+size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbd,
+                                void* dst, size_t* dstCapacityPtr,
+                          const void* src, size_t* srcSizePtr)
+{
+    const char* const istart = (const char*)src;
+    const char* const iend = istart + *srcSizePtr;
+    const char* ip = istart;
+    char* const ostart = (char*)dst;
+    char* const oend = ostart + *dstCapacityPtr;
+    char* op = ostart;
+    U32 someMoreWork = 1;
+
+    while (someMoreWork) {
+        switch(zbd->stage)
+        {
+        case ZBUFFds_init :
+            return ERROR(init_missing);
+
+        case ZBUFFds_loadHeader :
+            {   size_t const hSize = ZSTD_getFrameParams(&(zbd->fParams), zbd->headerBuffer, zbd->lhSize);
+                if (ZSTD_isError(hSize)) return hSize;
+                if (hSize != 0) {   /* need more input */
+                    size_t const toLoad = hSize - zbd->lhSize;   /* if hSize!=0, hSize > zbd->lhSize */
+                    if (toLoad > (size_t)(iend-ip)) {   /* not enough input to load full header */
+                        memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip);
+                        zbd->lhSize += iend-ip;
+                        *dstCapacityPtr = 0;
+                        return (hSize - zbd->lhSize) + ZSTD_blockHeaderSize;   /* remaining header bytes + next block header */
+                    }
+                    memcpy(zbd->headerBuffer + zbd->lhSize, ip, toLoad); zbd->lhSize = hSize; ip += toLoad;
+                    break;
+            }   }
+
+            /* Consume header */
+            {   size_t const h1Size = ZSTD_nextSrcSizeToDecompress(zbd->zd);  /* == ZSTD_frameHeaderSize_min */
+                size_t const h1Result = ZSTD_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer, h1Size);
+                if (ZSTD_isError(h1Result)) return h1Result;   /* should not happen : already checked */
+                if (h1Size < zbd->lhSize) {   /* long header */
+                    size_t const h2Size = ZSTD_nextSrcSizeToDecompress(zbd->zd);
+                    size_t const h2Result = ZSTD_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer+h1Size, h2Size);
+                    if (ZSTD_isError(h2Result)) return h2Result;
+            }   }
+
+            zbd->fParams.windowSize = MAX(zbd->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
+
+            /* Frame header instruct buffer sizes */
+            {   size_t const blockSize = MIN(zbd->fParams.windowSize, ZSTD_BLOCKSIZE_ABSOLUTEMAX);
+                size_t const neededOutSize = zbd->fParams.windowSize + blockSize;
+                zbd->blockSize = blockSize;
+                if (zbd->inBuffSize < blockSize) {
+                    zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
+                    zbd->inBuffSize = blockSize;
+                    zbd->inBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, blockSize);
+                    if (zbd->inBuff == NULL) return ERROR(memory_allocation);
+                }
+                if (zbd->outBuffSize < neededOutSize) {
+                    zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
+                    zbd->outBuffSize = neededOutSize;
+                    zbd->outBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, neededOutSize);
+                    if (zbd->outBuff == NULL) return ERROR(memory_allocation);
+            }   }
+            zbd->stage = ZBUFFds_read;
+            /* pass-through */
+
+        case ZBUFFds_read:
+            {   size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zbd->zd);
+                if (neededInSize==0) {  /* end of frame */
+                    zbd->stage = ZBUFFds_init;
+                    someMoreWork = 0;
+                    break;
+                }
+                if ((size_t)(iend-ip) >= neededInSize) {  /* decode directly from src */
+                    const int isSkipFrame = ZSTD_isSkipFrame(zbd->zd);
+                    size_t const decodedSize = ZSTD_decompressContinue(zbd->zd,
+                        zbd->outBuff + zbd->outStart, (isSkipFrame ? 0 : zbd->outBuffSize - zbd->outStart),
+                        ip, neededInSize);
+                    if (ZSTD_isError(decodedSize)) return decodedSize;
+                    ip += neededInSize;
+                    if (!decodedSize && !isSkipFrame) break;   /* this was just a header */
+                    zbd->outEnd = zbd->outStart +  decodedSize;
+                    zbd->stage = ZBUFFds_flush;
+                    break;
+                }
+                if (ip==iend) { someMoreWork = 0; break; }   /* no more input */
+                zbd->stage = ZBUFFds_load;
+                /* pass-through */
+            }
+
+        case ZBUFFds_load:
+            {   size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zbd->zd);
+                size_t const toLoad = neededInSize - zbd->inPos;   /* should always be <= remaining space within inBuff */
+                size_t loadedSize;
+                if (toLoad > zbd->inBuffSize - zbd->inPos) return ERROR(corruption_detected);   /* should never happen */
+                loadedSize = ZBUFF_limitCopy(zbd->inBuff + zbd->inPos, toLoad, ip, iend-ip);
+                ip += loadedSize;
+                zbd->inPos += loadedSize;
+                if (loadedSize < toLoad) { someMoreWork = 0; break; }   /* not enough input, wait for more */
+
+                /* decode loaded input */
+                {  const int isSkipFrame = ZSTD_isSkipFrame(zbd->zd);
+                   size_t const decodedSize = ZSTD_decompressContinue(zbd->zd,
+                        zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
+                        zbd->inBuff, neededInSize);
+                    if (ZSTD_isError(decodedSize)) return decodedSize;
+                    zbd->inPos = 0;   /* input is consumed */
+                    if (!decodedSize && !isSkipFrame) { zbd->stage = ZBUFFds_read; break; }   /* this was just a header */
+                    zbd->outEnd = zbd->outStart +  decodedSize;
+                    zbd->stage = ZBUFFds_flush;
+                    /* pass-through */
+            }   }
+
+        case ZBUFFds_flush:
+            {   size_t const toFlushSize = zbd->outEnd - zbd->outStart;
+                size_t const flushedSize = ZBUFF_limitCopy(op, oend-op, zbd->outBuff + zbd->outStart, toFlushSize);
+                op += flushedSize;
+                zbd->outStart += flushedSize;
+                if (flushedSize == toFlushSize) {  /* flush completed */
+                    zbd->stage = ZBUFFds_read;
+                    if (zbd->outStart + zbd->blockSize > zbd->outBuffSize)
+                        zbd->outStart = zbd->outEnd = 0;
+                    break;
+                }
+                /* cannot flush everything */
+                someMoreWork = 0;
+                break;
+            }
+        default: return ERROR(GENERIC);   /* impossible */
+    }   }
+
+    /* result */
+    *srcSizePtr = ip-istart;
+    *dstCapacityPtr = op-ostart;
+    {   size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zbd->zd);
+        if (!nextSrcSizeHint) return (zbd->outEnd != zbd->outStart);   /* return 0 only if fully flushed too */
+        nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zbd->zd) == ZSTDnit_block);
+        if (zbd->inPos > nextSrcSizeHint) return ERROR(GENERIC);   /* should never happen */
+        nextSrcSizeHint -= zbd->inPos;   /* already loaded*/
+        return nextSrcSizeHint;
+    }
+}
+
+
+/* *************************************
+*  Tool functions
+***************************************/
+size_t ZBUFF_recommendedDInSize(void)  { return ZSTD_BLOCKSIZE_ABSOLUTEMAX + ZSTD_blockHeaderSize /* block header size*/ ; }
+size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/decompress/zstd_decompress.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,1842 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+
+/* ***************************************************************
+*  Tuning parameters
+*****************************************************************/
+/*!
+ * HEAPMODE :
+ * Select how default decompression function ZSTD_decompress() will allocate memory,
+ * in memory stack (0), or in memory heap (1, requires malloc())
+ */
+#ifndef ZSTD_HEAPMODE
+#  define ZSTD_HEAPMODE 1
+#endif
+
+/*!
+*  LEGACY_SUPPORT :
+*  if set to 1, ZSTD_decompress() can decode older formats (v0.1+)
+*/
+#ifndef ZSTD_LEGACY_SUPPORT
+#  define ZSTD_LEGACY_SUPPORT 0
+#endif
+
+/*!
+*  MAXWINDOWSIZE_DEFAULT :
+*  maximum window size accepted by DStream, by default.
+*  Frames requiring more memory will be rejected.
+*/
+#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT
+#  define ZSTD_MAXWINDOWSIZE_DEFAULT ((1 << ZSTD_WINDOWLOG_MAX) + 1)   /* defined within zstd.h */
+#endif
+
+
+/*-*******************************************************
+*  Dependencies
+*********************************************************/
+#include <string.h>      /* memcpy, memmove, memset */
+#include "mem.h"         /* low level memory routines */
+#define XXH_STATIC_LINKING_ONLY   /* XXH64_state_t */
+#include "xxhash.h"      /* XXH64_* */
+#define FSE_STATIC_LINKING_ONLY
+#include "fse.h"
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "zstd_internal.h"
+
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
+#  include "zstd_legacy.h"
+#endif
+
+
+/*-*************************************
+*  Macros
+***************************************/
+#define ZSTD_isError ERR_isError   /* for inlining */
+#define FSE_isError  ERR_isError
+#define HUF_isError  ERR_isError
+
+
+/*_*******************************************************
+*  Memory operations
+**********************************************************/
+static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
+
+
+/*-*************************************************************
+*   Context management
+***************************************************************/
+typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
+               ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
+               ZSTDds_decompressLastBlock, ZSTDds_checkChecksum,
+               ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage;
+
+struct ZSTD_DCtx_s
+{
+    const FSE_DTable* LLTptr;
+    const FSE_DTable* MLTptr;
+    const FSE_DTable* OFTptr;
+    const HUF_DTable* HUFptr;
+    FSE_DTable LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
+    FSE_DTable OFTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
+    FSE_DTable MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
+    HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)];  /* can accommodate HUF_decompress4X */
+    const void* previousDstEnd;
+    const void* base;
+    const void* vBase;
+    const void* dictEnd;
+    size_t expected;
+    U32 rep[ZSTD_REP_NUM];
+    ZSTD_frameParams fParams;
+    blockType_e bType;   /* used in ZSTD_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
+    ZSTD_dStage stage;
+    U32 litEntropy;
+    U32 fseEntropy;
+    XXH64_state_t xxhState;
+    size_t headerSize;
+    U32 dictID;
+    const BYTE* litPtr;
+    ZSTD_customMem customMem;
+    size_t litBufSize;
+    size_t litSize;
+    size_t rleSize;
+    BYTE litBuffer[ZSTD_BLOCKSIZE_ABSOLUTEMAX + WILDCOPY_OVERLENGTH];
+    BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
+};  /* typedef'd to ZSTD_DCtx within "zstd.h" */
+
+size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx) { return (dctx==NULL) ? 0 : sizeof(ZSTD_DCtx); }
+
+size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); }
+
+size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
+{
+    dctx->expected = ZSTD_frameHeaderSize_prefix;
+    dctx->stage = ZSTDds_getFrameHeaderSize;
+    dctx->previousDstEnd = NULL;
+    dctx->base = NULL;
+    dctx->vBase = NULL;
+    dctx->dictEnd = NULL;
+    dctx->hufTable[0] = (HUF_DTable)((HufLog)*0x1000001);  /* cover both little and big endian */
+    dctx->litEntropy = dctx->fseEntropy = 0;
+    dctx->dictID = 0;
+    MEM_STATIC_ASSERT(sizeof(dctx->rep) == sizeof(repStartValue));
+    memcpy(dctx->rep, repStartValue, sizeof(repStartValue));  /* initial repcodes */
+    dctx->LLTptr = dctx->LLTable;
+    dctx->MLTptr = dctx->MLTable;
+    dctx->OFTptr = dctx->OFTable;
+    dctx->HUFptr = dctx->hufTable;
+    return 0;
+}
+
+ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
+{
+    ZSTD_DCtx* dctx;
+
+    if (!customMem.customAlloc && !customMem.customFree) customMem = defaultCustomMem;
+    if (!customMem.customAlloc || !customMem.customFree) return NULL;
+
+    dctx = (ZSTD_DCtx*)ZSTD_malloc(sizeof(ZSTD_DCtx), customMem);
+    if (!dctx) return NULL;
+    memcpy(&dctx->customMem, &customMem, sizeof(customMem));
+    ZSTD_decompressBegin(dctx);
+    return dctx;
+}
+
+ZSTD_DCtx* ZSTD_createDCtx(void)
+{
+    return ZSTD_createDCtx_advanced(defaultCustomMem);
+}
+
+size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
+{
+    if (dctx==NULL) return 0;   /* support free on NULL */
+    ZSTD_free(dctx, dctx->customMem);
+    return 0;   /* reserved as a potential error code in the future */
+}
+
+void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx)
+{
+    size_t const workSpaceSize = (ZSTD_BLOCKSIZE_ABSOLUTEMAX+WILDCOPY_OVERLENGTH) + ZSTD_frameHeaderSize_max;
+    memcpy(dstDCtx, srcDCtx, sizeof(ZSTD_DCtx) - workSpaceSize);  /* no need to copy workspace */
+}
+
+static void ZSTD_refDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx)
+{
+    ZSTD_decompressBegin(dstDCtx);  /* init */
+    if (srcDCtx) {   /* support refDCtx on NULL */
+        dstDCtx->dictEnd = srcDCtx->dictEnd;
+        dstDCtx->vBase = srcDCtx->vBase;
+        dstDCtx->base = srcDCtx->base;
+        dstDCtx->previousDstEnd = srcDCtx->previousDstEnd;
+        dstDCtx->dictID = srcDCtx->dictID;
+        dstDCtx->litEntropy = srcDCtx->litEntropy;
+        dstDCtx->fseEntropy = srcDCtx->fseEntropy;
+        dstDCtx->LLTptr = srcDCtx->LLTable;
+        dstDCtx->MLTptr = srcDCtx->MLTable;
+        dstDCtx->OFTptr = srcDCtx->OFTable;
+        dstDCtx->HUFptr = srcDCtx->hufTable;
+        dstDCtx->rep[0] = srcDCtx->rep[0];
+        dstDCtx->rep[1] = srcDCtx->rep[1];
+        dstDCtx->rep[2] = srcDCtx->rep[2];
+    }
+}
+
+
+/*-*************************************************************
+*   Decompression section
+***************************************************************/
+
+/* See compression format details in : doc/zstd_compression_format.md */
+
+/** ZSTD_frameHeaderSize() :
+*   srcSize must be >= ZSTD_frameHeaderSize_prefix.
+*   @return : size of the Frame Header */
+static size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize)
+{
+    if (srcSize < ZSTD_frameHeaderSize_prefix) return ERROR(srcSize_wrong);
+    {   BYTE const fhd = ((const BYTE*)src)[4];
+        U32 const dictID= fhd & 3;
+        U32 const singleSegment = (fhd >> 5) & 1;
+        U32 const fcsId = fhd >> 6;
+        return ZSTD_frameHeaderSize_prefix + !singleSegment + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId]
+                + (singleSegment && !fcsId);
+    }
+}
+
+
+/** ZSTD_getFrameParams() :
+*   decode Frame Header, or require larger `srcSize`.
+*   @return : 0, `fparamsPtr` is correctly filled,
+*            >0, `srcSize` is too small, result is expected `srcSize`,
+*             or an error code, which can be tested using ZSTD_isError() */
+size_t ZSTD_getFrameParams(ZSTD_frameParams* fparamsPtr, const void* src, size_t srcSize)
+{
+    const BYTE* ip = (const BYTE*)src;
+
+    if (srcSize < ZSTD_frameHeaderSize_prefix) return ZSTD_frameHeaderSize_prefix;
+    if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) {
+        if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
+            if (srcSize < ZSTD_skippableHeaderSize) return ZSTD_skippableHeaderSize; /* magic number + skippable frame length */
+            memset(fparamsPtr, 0, sizeof(*fparamsPtr));
+            fparamsPtr->frameContentSize = MEM_readLE32((const char *)src + 4);
+            fparamsPtr->windowSize = 0; /* windowSize==0 means a frame is skippable */
+            return 0;
+        }
+        return ERROR(prefix_unknown);
+    }
+
+    /* ensure there is enough `srcSize` to fully read/decode frame header */
+    { size_t const fhsize = ZSTD_frameHeaderSize(src, srcSize);
+      if (srcSize < fhsize) return fhsize; }
+
+    {   BYTE const fhdByte = ip[4];
+        size_t pos = 5;
+        U32 const dictIDSizeCode = fhdByte&3;
+        U32 const checksumFlag = (fhdByte>>2)&1;
+        U32 const singleSegment = (fhdByte>>5)&1;
+        U32 const fcsID = fhdByte>>6;
+        U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX;
+        U32 windowSize = 0;
+        U32 dictID = 0;
+        U64 frameContentSize = 0;
+        if ((fhdByte & 0x08) != 0) return ERROR(frameParameter_unsupported);   /* reserved bits, which must be zero */
+        if (!singleSegment) {
+            BYTE const wlByte = ip[pos++];
+            U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
+            if (windowLog > ZSTD_WINDOWLOG_MAX) return ERROR(frameParameter_windowTooLarge);  /* avoids issue with 1 << windowLog */
+            windowSize = (1U << windowLog);
+            windowSize += (windowSize >> 3) * (wlByte&7);
+        }
+
+        switch(dictIDSizeCode)
+        {
+            default:   /* impossible */
+            case 0 : break;
+            case 1 : dictID = ip[pos]; pos++; break;
+            case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
+            case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break;
+        }
+        switch(fcsID)
+        {
+            default:   /* impossible */
+            case 0 : if (singleSegment) frameContentSize = ip[pos]; break;
+            case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
+            case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
+            case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
+        }
+        if (!windowSize) windowSize = (U32)frameContentSize;
+        if (windowSize > windowSizeMax) return ERROR(frameParameter_windowTooLarge);
+        fparamsPtr->frameContentSize = frameContentSize;
+        fparamsPtr->windowSize = windowSize;
+        fparamsPtr->dictID = dictID;
+        fparamsPtr->checksumFlag = checksumFlag;
+    }
+    return 0;
+}
+
+
+/** ZSTD_getDecompressedSize() :
+*   compatible with legacy mode
+*   @return : decompressed size if known, 0 otherwise
+              note : 0 can mean any of the following :
+                   - decompressed size is not present within frame header
+                   - frame header unknown / not supported
+                   - frame header not complete (`srcSize` too small) */
+unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize)
+{
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT==1)
+    if (ZSTD_isLegacy(src, srcSize)) return ZSTD_getDecompressedSize_legacy(src, srcSize);
+#endif
+    {   ZSTD_frameParams fparams;
+        size_t const frResult = ZSTD_getFrameParams(&fparams, src, srcSize);
+        if (frResult!=0) return 0;
+        return fparams.frameContentSize;
+    }
+}
+
+
+/** ZSTD_decodeFrameHeader() :
+*   `headerSize` must be the size provided by ZSTD_frameHeaderSize().
+*   @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */
+static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize)
+{
+    size_t const result = ZSTD_getFrameParams(&(dctx->fParams), src, headerSize);
+    if (ZSTD_isError(result)) return result;  /* invalid header */
+    if (result>0) return ERROR(srcSize_wrong);   /* headerSize too small */
+    if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID)) return ERROR(dictionary_wrong);
+    if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0);
+    return 0;
+}
+
+
+typedef struct
+{
+    blockType_e blockType;
+    U32 lastBlock;
+    U32 origSize;
+} blockProperties_t;
+
+/*! ZSTD_getcBlockSize() :
+*   Provides the size of compressed block from block header `src` */
+size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
+{
+    if (srcSize < ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+    {   U32 const cBlockHeader = MEM_readLE24(src);
+        U32 const cSize = cBlockHeader >> 3;
+        bpPtr->lastBlock = cBlockHeader & 1;
+        bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
+        bpPtr->origSize = cSize;   /* only useful for RLE */
+        if (bpPtr->blockType == bt_rle) return 1;
+        if (bpPtr->blockType == bt_reserved) return ERROR(corruption_detected);
+        return cSize;
+    }
+}
+
+
+static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
+    memcpy(dst, src, srcSize);
+    return srcSize;
+}
+
+
+static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize, size_t regenSize)
+{
+    if (srcSize != 1) return ERROR(srcSize_wrong);
+    if (regenSize > dstCapacity) return ERROR(dstSize_tooSmall);
+    memset(dst, *(const BYTE*)src, regenSize);
+    return regenSize;
+}
+
+/*! ZSTD_decodeLiteralsBlock() :
+    @return : nb of bytes read from src (< srcSize ) */
+size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
+                          const void* src, size_t srcSize)   /* note : srcSize < BLOCKSIZE */
+{
+    if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
+
+    {   const BYTE* const istart = (const BYTE*) src;
+        symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
+
+        switch(litEncType)
+        {
+        case set_repeat:
+            if (dctx->litEntropy==0) return ERROR(dictionary_corrupted);
+            /* fall-through */
+        case set_compressed:
+            if (srcSize < 5) return ERROR(corruption_detected);   /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3 */
+            {   size_t lhSize, litSize, litCSize;
+                U32 singleStream=0;
+                U32 const lhlCode = (istart[0] >> 2) & 3;
+                U32 const lhc = MEM_readLE32(istart);
+                switch(lhlCode)
+                {
+                case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
+                    /* 2 - 2 - 10 - 10 */
+                    singleStream = !lhlCode;
+                    lhSize = 3;
+                    litSize  = (lhc >> 4) & 0x3FF;
+                    litCSize = (lhc >> 14) & 0x3FF;
+                    break;
+                case 2:
+                    /* 2 - 2 - 14 - 14 */
+                    lhSize = 4;
+                    litSize  = (lhc >> 4) & 0x3FFF;
+                    litCSize = lhc >> 18;
+                    break;
+                case 3:
+                    /* 2 - 2 - 18 - 18 */
+                    lhSize = 5;
+                    litSize  = (lhc >> 4) & 0x3FFFF;
+                    litCSize = (lhc >> 22) + (istart[4] << 10);
+                    break;
+                }
+                if (litSize > ZSTD_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
+                if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
+
+                if (HUF_isError((litEncType==set_repeat) ?
+                                    ( singleStream ?
+                                        HUF_decompress1X_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr) :
+                                        HUF_decompress4X_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr) ) :
+                                    ( singleStream ?
+                                        HUF_decompress1X2_DCtx(dctx->hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize) :
+                                        HUF_decompress4X_hufOnly (dctx->hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize)) ))
+                    return ERROR(corruption_detected);
+
+                dctx->litPtr = dctx->litBuffer;
+                dctx->litBufSize = ZSTD_BLOCKSIZE_ABSOLUTEMAX+WILDCOPY_OVERLENGTH;
+                dctx->litSize = litSize;
+                dctx->litEntropy = 1;
+                if (litEncType==set_compressed) dctx->HUFptr = dctx->hufTable;
+                return litCSize + lhSize;
+            }
+
+        case set_basic:
+            {   size_t litSize, lhSize;
+                U32 const lhlCode = ((istart[0]) >> 2) & 3;
+                switch(lhlCode)
+                {
+                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
+                    lhSize = 1;
+                    litSize = istart[0] >> 3;
+                    break;
+                case 1:
+                    lhSize = 2;
+                    litSize = MEM_readLE16(istart) >> 4;
+                    break;
+                case 3:
+                    lhSize = 3;
+                    litSize = MEM_readLE24(istart) >> 4;
+                    break;
+                }
+
+                if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
+                    if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
+                    memcpy(dctx->litBuffer, istart+lhSize, litSize);
+                    dctx->litPtr = dctx->litBuffer;
+                    dctx->litBufSize = ZSTD_BLOCKSIZE_ABSOLUTEMAX+8;
+                    dctx->litSize = litSize;
+                    return lhSize+litSize;
+                }
+                /* direct reference into compressed stream */
+                dctx->litPtr = istart+lhSize;
+                dctx->litBufSize = srcSize-lhSize;
+                dctx->litSize = litSize;
+                return lhSize+litSize;
+            }
+
+        case set_rle:
+            {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
+                size_t litSize, lhSize;
+                switch(lhlCode)
+                {
+                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
+                    lhSize = 1;
+                    litSize = istart[0] >> 3;
+                    break;
+                case 1:
+                    lhSize = 2;
+                    litSize = MEM_readLE16(istart) >> 4;
+                    break;
+                case 3:
+                    lhSize = 3;
+                    litSize = MEM_readLE24(istart) >> 4;
+                    if (srcSize<4) return ERROR(corruption_detected);   /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
+                    break;
+                }
+                if (litSize > ZSTD_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
+                memset(dctx->litBuffer, istart[lhSize], litSize);
+                dctx->litPtr = dctx->litBuffer;
+                dctx->litBufSize = ZSTD_BLOCKSIZE_ABSOLUTEMAX+WILDCOPY_OVERLENGTH;
+                dctx->litSize = litSize;
+                return lhSize+1;
+            }
+        default:
+            return ERROR(corruption_detected);   /* impossible */
+        }
+    }
+}
+
+
+typedef union {
+    FSE_decode_t realData;
+    U32 alignedBy4;
+} FSE_decode_t4;
+
+static const FSE_decode_t4 LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
+    { { LL_DEFAULTNORMLOG, 1, 1 } }, /* header : tableLog, fastMode, fastMode */
+    { {  0,  0,  4 } },              /* 0 : base, symbol, bits */
+    { { 16,  0,  4 } },
+    { { 32,  1,  5 } },
+    { {  0,  3,  5 } },
+    { {  0,  4,  5 } },
+    { {  0,  6,  5 } },
+    { {  0,  7,  5 } },
+    { {  0,  9,  5 } },
+    { {  0, 10,  5 } },
+    { {  0, 12,  5 } },
+    { {  0, 14,  6 } },
+    { {  0, 16,  5 } },
+    { {  0, 18,  5 } },
+    { {  0, 19,  5 } },
+    { {  0, 21,  5 } },
+    { {  0, 22,  5 } },
+    { {  0, 24,  5 } },
+    { { 32, 25,  5 } },
+    { {  0, 26,  5 } },
+    { {  0, 27,  6 } },
+    { {  0, 29,  6 } },
+    { {  0, 31,  6 } },
+    { { 32,  0,  4 } },
+    { {  0,  1,  4 } },
+    { {  0,  2,  5 } },
+    { { 32,  4,  5 } },
+    { {  0,  5,  5 } },
+    { { 32,  7,  5 } },
+    { {  0,  8,  5 } },
+    { { 32, 10,  5 } },
+    { {  0, 11,  5 } },
+    { {  0, 13,  6 } },
+    { { 32, 16,  5 } },
+    { {  0, 17,  5 } },
+    { { 32, 19,  5 } },
+    { {  0, 20,  5 } },
+    { { 32, 22,  5 } },
+    { {  0, 23,  5 } },
+    { {  0, 25,  4 } },
+    { { 16, 25,  4 } },
+    { { 32, 26,  5 } },
+    { {  0, 28,  6 } },
+    { {  0, 30,  6 } },
+    { { 48,  0,  4 } },
+    { { 16,  1,  4 } },
+    { { 32,  2,  5 } },
+    { { 32,  3,  5 } },
+    { { 32,  5,  5 } },
+    { { 32,  6,  5 } },
+    { { 32,  8,  5 } },
+    { { 32,  9,  5 } },
+    { { 32, 11,  5 } },
+    { { 32, 12,  5 } },
+    { {  0, 15,  6 } },
+    { { 32, 17,  5 } },
+    { { 32, 18,  5 } },
+    { { 32, 20,  5 } },
+    { { 32, 21,  5 } },
+    { { 32, 23,  5 } },
+    { { 32, 24,  5 } },
+    { {  0, 35,  6 } },
+    { {  0, 34,  6 } },
+    { {  0, 33,  6 } },
+    { {  0, 32,  6 } },
+};   /* LL_defaultDTable */
+
+static const FSE_decode_t4 ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
+    { { ML_DEFAULTNORMLOG, 1, 1 } }, /* header : tableLog, fastMode, fastMode */
+    { {  0,  0,  6 } },              /* 0 : base, symbol, bits */
+    { {  0,  1,  4 } },
+    { { 32,  2,  5 } },
+    { {  0,  3,  5 } },
+    { {  0,  5,  5 } },
+    { {  0,  6,  5 } },
+    { {  0,  8,  5 } },
+    { {  0, 10,  6 } },
+    { {  0, 13,  6 } },
+    { {  0, 16,  6 } },
+    { {  0, 19,  6 } },
+    { {  0, 22,  6 } },
+    { {  0, 25,  6 } },
+    { {  0, 28,  6 } },
+    { {  0, 31,  6 } },
+    { {  0, 33,  6 } },
+    { {  0, 35,  6 } },
+    { {  0, 37,  6 } },
+    { {  0, 39,  6 } },
+    { {  0, 41,  6 } },
+    { {  0, 43,  6 } },
+    { {  0, 45,  6 } },
+    { { 16,  1,  4 } },
+    { {  0,  2,  4 } },
+    { { 32,  3,  5 } },
+    { {  0,  4,  5 } },
+    { { 32,  6,  5 } },
+    { {  0,  7,  5 } },
+    { {  0,  9,  6 } },
+    { {  0, 12,  6 } },
+    { {  0, 15,  6 } },
+    { {  0, 18,  6 } },
+    { {  0, 21,  6 } },
+    { {  0, 24,  6 } },
+    { {  0, 27,  6 } },
+    { {  0, 30,  6 } },
+    { {  0, 32,  6 } },
+    { {  0, 34,  6 } },
+    { {  0, 36,  6 } },
+    { {  0, 38,  6 } },
+    { {  0, 40,  6 } },
+    { {  0, 42,  6 } },
+    { {  0, 44,  6 } },
+    { { 32,  1,  4 } },
+    { { 48,  1,  4 } },
+    { { 16,  2,  4 } },
+    { { 32,  4,  5 } },
+    { { 32,  5,  5 } },
+    { { 32,  7,  5 } },
+    { { 32,  8,  5 } },
+    { {  0, 11,  6 } },
+    { {  0, 14,  6 } },
+    { {  0, 17,  6 } },
+    { {  0, 20,  6 } },
+    { {  0, 23,  6 } },
+    { {  0, 26,  6 } },
+    { {  0, 29,  6 } },
+    { {  0, 52,  6 } },
+    { {  0, 51,  6 } },
+    { {  0, 50,  6 } },
+    { {  0, 49,  6 } },
+    { {  0, 48,  6 } },
+    { {  0, 47,  6 } },
+    { {  0, 46,  6 } },
+};   /* ML_defaultDTable */
+
+static const FSE_decode_t4 OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
+    { { OF_DEFAULTNORMLOG, 1, 1 } }, /* header : tableLog, fastMode, fastMode */
+    { {  0,  0,  5 } },              /* 0 : base, symbol, bits */
+    { {  0,  6,  4 } },
+    { {  0,  9,  5 } },
+    { {  0, 15,  5 } },
+    { {  0, 21,  5 } },
+    { {  0,  3,  5 } },
+    { {  0,  7,  4 } },
+    { {  0, 12,  5 } },
+    { {  0, 18,  5 } },
+    { {  0, 23,  5 } },
+    { {  0,  5,  5 } },
+    { {  0,  8,  4 } },
+    { {  0, 14,  5 } },
+    { {  0, 20,  5 } },
+    { {  0,  2,  5 } },
+    { { 16,  7,  4 } },
+    { {  0, 11,  5 } },
+    { {  0, 17,  5 } },
+    { {  0, 22,  5 } },
+    { {  0,  4,  5 } },
+    { { 16,  8,  4 } },
+    { {  0, 13,  5 } },
+    { {  0, 19,  5 } },
+    { {  0,  1,  5 } },
+    { { 16,  6,  4 } },
+    { {  0, 10,  5 } },
+    { {  0, 16,  5 } },
+    { {  0, 28,  5 } },
+    { {  0, 27,  5 } },
+    { {  0, 26,  5 } },
+    { {  0, 25,  5 } },
+    { {  0, 24,  5 } },
+};   /* OF_defaultDTable */
+
+/*! ZSTD_buildSeqTable() :
+    @return : nb bytes read from src,
+              or an error code if it fails, testable with ZSTD_isError()
+*/
+static size_t ZSTD_buildSeqTable(FSE_DTable* DTableSpace, const FSE_DTable** DTablePtr,
+                                 symbolEncodingType_e type, U32 max, U32 maxLog,
+                                 const void* src, size_t srcSize,
+                                 const FSE_decode_t4* defaultTable, U32 flagRepeatTable)
+{
+    const void* const tmpPtr = defaultTable;   /* bypass strict aliasing */
+    switch(type)
+    {
+    case set_rle :
+        if (!srcSize) return ERROR(srcSize_wrong);
+        if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected);
+        FSE_buildDTable_rle(DTableSpace, *(const BYTE*)src);
+        *DTablePtr = DTableSpace;
+        return 1;
+    case set_basic :
+        *DTablePtr = (const FSE_DTable*)tmpPtr;
+        return 0;
+    case set_repeat:
+        if (!flagRepeatTable) return ERROR(corruption_detected);
+        return 0;
+    default :   /* impossible */
+    case set_compressed :
+        {   U32 tableLog;
+            S16 norm[MaxSeq+1];
+            size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
+            if (FSE_isError(headerSize)) return ERROR(corruption_detected);
+            if (tableLog > maxLog) return ERROR(corruption_detected);
+            FSE_buildDTable(DTableSpace, norm, max, tableLog);
+            *DTablePtr = DTableSpace;
+            return headerSize;
+    }   }
+}
+
+size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
+                             const void* src, size_t srcSize)
+{
+    const BYTE* const istart = (const BYTE* const)src;
+    const BYTE* const iend = istart + srcSize;
+    const BYTE* ip = istart;
+
+    /* check */
+    if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong);
+
+    /* SeqHead */
+    {   int nbSeq = *ip++;
+        if (!nbSeq) { *nbSeqPtr=0; return 1; }
+        if (nbSeq > 0x7F) {
+            if (nbSeq == 0xFF) {
+                if (ip+2 > iend) return ERROR(srcSize_wrong);
+                nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
+            } else {
+                if (ip >= iend) return ERROR(srcSize_wrong);
+                nbSeq = ((nbSeq-0x80)<<8) + *ip++;
+            }
+        }
+        *nbSeqPtr = nbSeq;
+    }
+
+    /* FSE table descriptors */
+    if (ip+4 > iend) return ERROR(srcSize_wrong); /* minimum possible size */
+    {   symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
+        symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
+        symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
+        ip++;
+
+        /* Build DTables */
+        {   size_t const llhSize = ZSTD_buildSeqTable(dctx->LLTable, &dctx->LLTptr,
+                                                      LLtype, MaxLL, LLFSELog,
+                                                      ip, iend-ip, LL_defaultDTable, dctx->fseEntropy);
+            if (ZSTD_isError(llhSize)) return ERROR(corruption_detected);
+            ip += llhSize;
+        }
+        {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->OFTable, &dctx->OFTptr,
+                                                      OFtype, MaxOff, OffFSELog,
+                                                      ip, iend-ip, OF_defaultDTable, dctx->fseEntropy);
+            if (ZSTD_isError(ofhSize)) return ERROR(corruption_detected);
+            ip += ofhSize;
+        }
+        {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->MLTable, &dctx->MLTptr,
+                                                      MLtype, MaxML, MLFSELog,
+                                                      ip, iend-ip, ML_defaultDTable, dctx->fseEntropy);
+            if (ZSTD_isError(mlhSize)) return ERROR(corruption_detected);
+            ip += mlhSize;
+        }
+    }
+
+    return ip-istart;
+}
+
+
+typedef struct {
+    size_t litLength;
+    size_t matchLength;
+    size_t offset;
+} seq_t;
+
+typedef struct {
+    BIT_DStream_t DStream;
+    FSE_DState_t stateLL;
+    FSE_DState_t stateOffb;
+    FSE_DState_t stateML;
+    size_t prevOffset[ZSTD_REP_NUM];
+} seqState_t;
+
+
+static seq_t ZSTD_decodeSequence(seqState_t* seqState)
+{
+    seq_t seq;
+
+    U32 const llCode = FSE_peekSymbol(&seqState->stateLL);
+    U32 const mlCode = FSE_peekSymbol(&seqState->stateML);
+    U32 const ofCode = FSE_peekSymbol(&seqState->stateOffb);   /* <= maxOff, by table construction */
+
+    U32 const llBits = LL_bits[llCode];
+    U32 const mlBits = ML_bits[mlCode];
+    U32 const ofBits = ofCode;
+    U32 const totalBits = llBits+mlBits+ofBits;
+
+    static const U32 LL_base[MaxLL+1] = {
+                             0,  1,  2,  3,  4,  5,  6,  7,  8,  9,   10,    11,    12,    13,    14,     15,
+                            16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
+                            0x2000, 0x4000, 0x8000, 0x10000 };
+
+    static const U32 ML_base[MaxML+1] = {
+                             3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13,   14,    15,    16,    17,    18,
+                            19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,   30,    31,    32,    33,    34,
+                            35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
+                            0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
+
+    static const U32 OF_base[MaxOff+1] = {
+                 0,        1,       1,       5,     0xD,     0x1D,     0x3D,     0x7D,
+                 0xFD,   0x1FD,   0x3FD,   0x7FD,   0xFFD,   0x1FFD,   0x3FFD,   0x7FFD,
+                 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
+                 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD };
+
+    /* sequence */
+    {   size_t offset;
+        if (!ofCode)
+            offset = 0;
+        else {
+            offset = OF_base[ofCode] + BIT_readBits(&seqState->DStream, ofBits);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
+            if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
+        }
+
+        if (ofCode <= 1) {
+            offset += (llCode==0);
+            if (offset) {
+                size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
+                temp += !temp;   /* 0 is not valid; input is corrupted; force offset to 1 */
+                if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
+                seqState->prevOffset[1] = seqState->prevOffset[0];
+                seqState->prevOffset[0] = offset = temp;
+            } else {
+                offset = seqState->prevOffset[0];
+            }
+        } else {
+            seqState->prevOffset[2] = seqState->prevOffset[1];
+            seqState->prevOffset[1] = seqState->prevOffset[0];
+            seqState->prevOffset[0] = offset;
+        }
+        seq.offset = offset;
+    }
+
+    seq.matchLength = ML_base[mlCode] + ((mlCode>31) ? BIT_readBits(&seqState->DStream, mlBits) : 0);  /* <=  16 bits */
+    if (MEM_32bits() && (mlBits+llBits>24)) BIT_reloadDStream(&seqState->DStream);
+
+    seq.litLength = LL_base[llCode] + ((llCode>15) ? BIT_readBits(&seqState->DStream, llBits) : 0);    /* <=  16 bits */
+    if (MEM_32bits() ||
+       (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BIT_reloadDStream(&seqState->DStream);
+
+    /* ANS state update */
+    FSE_updateState(&seqState->stateLL, &seqState->DStream);    /* <=  9 bits */
+    FSE_updateState(&seqState->stateML, &seqState->DStream);    /* <=  9 bits */
+    if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
+    FSE_updateState(&seqState->stateOffb, &seqState->DStream);  /* <=  8 bits */
+
+    return seq;
+}
+
+
+FORCE_NOINLINE
+size_t ZSTD_execSequenceLast7(BYTE* op,
+                              BYTE* const oend, seq_t sequence,
+                              const BYTE** litPtr, const BYTE* const litLimit_w,
+                              const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
+{
+    BYTE* const oLitEnd = op + sequence.litLength;
+    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
+    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
+    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+    const BYTE* match = oLitEnd - sequence.offset;
+
+    /* check */
+    if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
+    if (iLitEnd > litLimit_w) return ERROR(corruption_detected);   /* over-read beyond lit buffer */
+    if (oLitEnd <= oend_w) return ERROR(GENERIC);   /* Precondition */
+
+    /* copy literals */
+    if (op < oend_w) {
+        ZSTD_wildcopy(op, *litPtr, oend_w - op);
+        *litPtr += oend_w - op;
+        op = oend_w;
+    }
+    while (op < oLitEnd) *op++ = *(*litPtr)++;
+
+    /* copy Match */
+    if (sequence.offset > (size_t)(oLitEnd - base)) {
+        /* offset beyond prefix */
+        if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
+        match = dictEnd - (base-match);
+        if (match + sequence.matchLength <= dictEnd) {
+            memmove(oLitEnd, match, sequence.matchLength);
+            return sequenceLength;
+        }
+        /* span extDict & currentPrefixSegment */
+        {   size_t const length1 = dictEnd - match;
+            memmove(oLitEnd, match, length1);
+            op = oLitEnd + length1;
+            sequence.matchLength -= length1;
+            match = base;
+    }   }
+    while (op < oMatchEnd) *op++ = *match++;
+    return sequenceLength;
+}
+
+
+FORCE_INLINE
+size_t ZSTD_execSequence(BYTE* op,
+                                BYTE* const oend, seq_t sequence,
+                                const BYTE** litPtr, const BYTE* const litLimit_w,
+                                const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
+{
+    BYTE* const oLitEnd = op + sequence.litLength;
+    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
+    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
+    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
+    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
+    const BYTE* match = oLitEnd - sequence.offset;
+
+    /* check */
+    if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
+    if (iLitEnd > litLimit_w) return ERROR(corruption_detected);   /* over-read beyond lit buffer */
+    if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit_w, base, vBase, dictEnd);
+
+    /* copy Literals */
+    ZSTD_copy8(op, *litPtr);
+    if (sequence.litLength > 8)
+        ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8);   /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
+    op = oLitEnd;
+    *litPtr = iLitEnd;   /* update for next sequence */
+
+    /* copy Match */
+    if (sequence.offset > (size_t)(oLitEnd - base)) {
+        /* offset beyond prefix */
+        if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
+        match = dictEnd - (base-match);
+        if (match + sequence.matchLength <= dictEnd) {
+            memmove(oLitEnd, match, sequence.matchLength);
+            return sequenceLength;
+        }
+        /* span extDict & currentPrefixSegment */
+        {   size_t const length1 = dictEnd - match;
+            memmove(oLitEnd, match, length1);
+            op = oLitEnd + length1;
+            sequence.matchLength -= length1;
+            match = base;
+            if (op > oend_w) {
+              U32 i;
+              for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
+              return sequenceLength;
+            }
+    }   }
+    /* Requirement: op <= oend_w */
+
+    /* match within prefix */
+    if (sequence.offset < 8) {
+        /* close range match, overlap */
+        static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
+        static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* substracted */
+        int const sub2 = dec64table[sequence.offset];
+        op[0] = match[0];
+        op[1] = match[1];
+        op[2] = match[2];
+        op[3] = match[3];
+        match += dec32table[sequence.offset];
+        ZSTD_copy4(op+4, match);
+        match -= sub2;
+    } else {
+        ZSTD_copy8(op, match);
+    }
+    op += 8; match += 8;
+
+    if (oMatchEnd > oend-(16-MINMATCH)) {
+        if (op < oend_w) {
+            ZSTD_wildcopy(op, match, oend_w - op);
+            match += oend_w - op;
+            op = oend_w;
+        }
+        while (op < oMatchEnd) *op++ = *match++;
+    } else {
+        ZSTD_wildcopy(op, match, sequence.matchLength-8);   /* works even if matchLength < 8 */
+    }
+    return sequenceLength;
+}
+
+
+static size_t ZSTD_decompressSequences(
+                               ZSTD_DCtx* dctx,
+                               void* dst, size_t maxDstSize,
+                         const void* seqStart, size_t seqSize)
+{
+    const BYTE* ip = (const BYTE*)seqStart;
+    const BYTE* const iend = ip + seqSize;
+    BYTE* const ostart = (BYTE* const)dst;
+    BYTE* const oend = ostart + maxDstSize;
+    BYTE* op = ostart;
+    const BYTE* litPtr = dctx->litPtr;
+    const BYTE* const litLimit_w = litPtr + dctx->litBufSize - WILDCOPY_OVERLENGTH;
+    const BYTE* const litEnd = litPtr + dctx->litSize;
+    const BYTE* const base = (const BYTE*) (dctx->base);
+    const BYTE* const vBase = (const BYTE*) (dctx->vBase);
+    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
+    int nbSeq;
+
+    /* Build Decoding Tables */
+    {   size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, seqSize);
+        if (ZSTD_isError(seqHSize)) return seqHSize;
+        ip += seqHSize;
+    }
+
+    /* Regen sequences */
+    if (nbSeq) {
+        seqState_t seqState;
+        dctx->fseEntropy = 1;
+        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->rep[i]; }
+        CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected);
+        FSE_initDState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
+        FSE_initDState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
+        FSE_initDState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
+
+        for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) {
+            nbSeq--;
+            {   seq_t const sequence = ZSTD_decodeSequence(&seqState);
+                size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litLimit_w, base, vBase, dictEnd);
+                if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
+                op += oneSeqSize;
+        }   }
+
+        /* check if reached exact end */
+        if (nbSeq) return ERROR(corruption_detected);
+        /* save reps for next block */
+        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->rep[i] = (U32)(seqState.prevOffset[i]); }
+    }
+
+    /* last literal segment */
+    {   size_t const lastLLSize = litEnd - litPtr;
+        if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
+        memcpy(op, litPtr, lastLLSize);
+        op += lastLLSize;
+    }
+
+    return op-ostart;
+}
+
+
+static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
+{
+    if (dst != dctx->previousDstEnd) {   /* not contiguous */
+        dctx->dictEnd = dctx->previousDstEnd;
+        dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+        dctx->base = dst;
+        dctx->previousDstEnd = dst;
+    }
+}
+
+
+static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
+                            void* dst, size_t dstCapacity,
+                      const void* src, size_t srcSize)
+{   /* blockType == blockCompressed */
+    const BYTE* ip = (const BYTE*)src;
+
+    if (srcSize >= ZSTD_BLOCKSIZE_ABSOLUTEMAX) return ERROR(srcSize_wrong);
+
+    /* Decode literals sub-block */
+    {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
+        if (ZSTD_isError(litCSize)) return litCSize;
+        ip += litCSize;
+        srcSize -= litCSize;
+    }
+    return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
+}
+
+
+size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
+                            void* dst, size_t dstCapacity,
+                      const void* src, size_t srcSize)
+{
+    size_t dSize;
+    ZSTD_checkContinuity(dctx, dst);
+    dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
+    dctx->previousDstEnd = (char*)dst + dSize;
+    return dSize;
+}
+
+
+/** ZSTD_insertBlock() :
+    insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
+ZSTDLIB_API size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize)
+{
+    ZSTD_checkContinuity(dctx, blockStart);
+    dctx->previousDstEnd = (const char*)blockStart + blockSize;
+    return blockSize;
+}
+
+
+size_t ZSTD_generateNxBytes(void* dst, size_t dstCapacity, BYTE byte, size_t length)
+{
+    if (length > dstCapacity) return ERROR(dstSize_tooSmall);
+    memset(dst, byte, length);
+    return length;
+}
+
+
+/*! ZSTD_decompressFrame() :
+*   `dctx` must be properly initialized */
+static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
+                                 void* dst, size_t dstCapacity,
+                                 const void* src, size_t srcSize)
+{
+    const BYTE* ip = (const BYTE*)src;
+    BYTE* const ostart = (BYTE* const)dst;
+    BYTE* const oend = ostart + dstCapacity;
+    BYTE* op = ostart;
+    size_t remainingSize = srcSize;
+
+    /* check */
+    if (srcSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+
+    /* Frame Header */
+    {   size_t const frameHeaderSize = ZSTD_frameHeaderSize(src, ZSTD_frameHeaderSize_prefix);
+        if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
+        if (srcSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
+        CHECK_F(ZSTD_decodeFrameHeader(dctx, src, frameHeaderSize));
+        ip += frameHeaderSize; remainingSize -= frameHeaderSize;
+    }
+
+    /* Loop on each block */
+    while (1) {
+        size_t decodedSize;
+        blockProperties_t blockProperties;
+        size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
+        if (ZSTD_isError(cBlockSize)) return cBlockSize;
+
+        ip += ZSTD_blockHeaderSize;
+        remainingSize -= ZSTD_blockHeaderSize;
+        if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
+
+        switch(blockProperties.blockType)
+        {
+        case bt_compressed:
+            decodedSize = ZSTD_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize);
+            break;
+        case bt_raw :
+            decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize);
+            break;
+        case bt_rle :
+            decodedSize = ZSTD_generateNxBytes(op, oend-op, *ip, blockProperties.origSize);
+            break;
+        case bt_reserved :
+        default:
+            return ERROR(corruption_detected);
+        }
+
+        if (ZSTD_isError(decodedSize)) return decodedSize;
+        if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, op, decodedSize);
+        op += decodedSize;
+        ip += cBlockSize;
+        remainingSize -= cBlockSize;
+        if (blockProperties.lastBlock) break;
+    }
+
+    if (dctx->fParams.checksumFlag) {   /* Frame content checksum verification */
+        U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState);
+        U32 checkRead;
+        if (remainingSize<4) return ERROR(checksum_wrong);
+        checkRead = MEM_readLE32(ip);
+        if (checkRead != checkCalc) return ERROR(checksum_wrong);
+        remainingSize -= 4;
+    }
+
+    if (remainingSize) return ERROR(srcSize_wrong);
+    return op-ostart;
+}
+
+
+size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
+                                 void* dst, size_t dstCapacity,
+                           const void* src, size_t srcSize,
+                           const void* dict, size_t dictSize)
+{
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT==1)
+    if (ZSTD_isLegacy(src, srcSize)) return ZSTD_decompressLegacy(dst, dstCapacity, src, srcSize, dict, dictSize);
+#endif
+    ZSTD_decompressBegin_usingDict(dctx, dict, dictSize);
+    ZSTD_checkContinuity(dctx, dst);
+    return ZSTD_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
+}
+
+
+size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    return ZSTD_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
+}
+
+
+size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE==1)
+    size_t regenSize;
+    ZSTD_DCtx* const dctx = ZSTD_createDCtx();
+    if (dctx==NULL) return ERROR(memory_allocation);
+    regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
+    ZSTD_freeDCtx(dctx);
+    return regenSize;
+#else   /* stack mode */
+    ZSTD_DCtx dctx;
+    return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
+#endif
+}
+
+
+/*-**************************************
+*   Advanced Streaming Decompression API
+*   Bufferless and synchronous
+****************************************/
+size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; }
+
+ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
+    switch(dctx->stage)
+    {
+    default:   /* should not happen */
+    case ZSTDds_getFrameHeaderSize:
+    case ZSTDds_decodeFrameHeader:
+        return ZSTDnit_frameHeader;
+    case ZSTDds_decodeBlockHeader:
+        return ZSTDnit_blockHeader;
+    case ZSTDds_decompressBlock:
+        return ZSTDnit_block;
+    case ZSTDds_decompressLastBlock:
+        return ZSTDnit_lastBlock;
+    case ZSTDds_checkChecksum:
+        return ZSTDnit_checksum;
+    case ZSTDds_decodeSkippableHeader:
+    case ZSTDds_skipFrame:
+        return ZSTDnit_skippableFrame;
+    }
+}
+
+int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; }   /* for zbuff */
+
+/** ZSTD_decompressContinue() :
+*   @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
+*             or an error code, which can be tested using ZSTD_isError() */
+size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    /* Sanity check */
+    if (srcSize != dctx->expected) return ERROR(srcSize_wrong);
+    if (dstCapacity) ZSTD_checkContinuity(dctx, dst);
+
+    switch (dctx->stage)
+    {
+    case ZSTDds_getFrameHeaderSize :
+        if (srcSize != ZSTD_frameHeaderSize_prefix) return ERROR(srcSize_wrong);      /* impossible */
+        if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {        /* skippable frame */
+            memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_prefix);
+            dctx->expected = ZSTD_skippableHeaderSize - ZSTD_frameHeaderSize_prefix;  /* magic number + skippable frame length */
+            dctx->stage = ZSTDds_decodeSkippableHeader;
+            return 0;
+        }
+        dctx->headerSize = ZSTD_frameHeaderSize(src, ZSTD_frameHeaderSize_prefix);
+        if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize;
+        memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_prefix);
+        if (dctx->headerSize > ZSTD_frameHeaderSize_prefix) {
+            dctx->expected = dctx->headerSize - ZSTD_frameHeaderSize_prefix;
+            dctx->stage = ZSTDds_decodeFrameHeader;
+            return 0;
+        }
+        dctx->expected = 0;   /* not necessary to copy more */
+
+    case ZSTDds_decodeFrameHeader:
+        memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_prefix, src, dctx->expected);
+        CHECK_F(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize));
+        dctx->expected = ZSTD_blockHeaderSize;
+        dctx->stage = ZSTDds_decodeBlockHeader;
+        return 0;
+
+    case ZSTDds_decodeBlockHeader:
+        {   blockProperties_t bp;
+            size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
+            if (ZSTD_isError(cBlockSize)) return cBlockSize;
+            dctx->expected = cBlockSize;
+            dctx->bType = bp.blockType;
+            dctx->rleSize = bp.origSize;
+            if (cBlockSize) {
+                dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock;
+                return 0;
+            }
+            /* empty block */
+            if (bp.lastBlock) {
+                if (dctx->fParams.checksumFlag) {
+                    dctx->expected = 4;
+                    dctx->stage = ZSTDds_checkChecksum;
+                } else {
+                    dctx->expected = 0; /* end of frame */
+                    dctx->stage = ZSTDds_getFrameHeaderSize;
+                }
+            } else {
+                dctx->expected = 3;  /* go directly to next header */
+                dctx->stage = ZSTDds_decodeBlockHeader;
+            }
+            return 0;
+        }
+    case ZSTDds_decompressLastBlock:
+    case ZSTDds_decompressBlock:
+        {   size_t rSize;
+            switch(dctx->bType)
+            {
+            case bt_compressed:
+                rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
+                break;
+            case bt_raw :
+                rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize);
+                break;
+            case bt_rle :
+                rSize = ZSTD_setRleBlock(dst, dstCapacity, src, srcSize, dctx->rleSize);
+                break;
+            case bt_reserved :   /* should never happen */
+            default:
+                return ERROR(corruption_detected);
+            }
+            if (ZSTD_isError(rSize)) return rSize;
+            if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize);
+
+            if (dctx->stage == ZSTDds_decompressLastBlock) {   /* end of frame */
+                if (dctx->fParams.checksumFlag) {  /* another round for frame checksum */
+                    dctx->expected = 4;
+                    dctx->stage = ZSTDds_checkChecksum;
+                } else {
+                    dctx->expected = 0;   /* ends here */
+                    dctx->stage = ZSTDds_getFrameHeaderSize;
+                }
+            } else {
+                dctx->stage = ZSTDds_decodeBlockHeader;
+                dctx->expected = ZSTD_blockHeaderSize;
+                dctx->previousDstEnd = (char*)dst + rSize;
+            }
+            return rSize;
+        }
+    case ZSTDds_checkChecksum:
+        {   U32 const h32 = (U32)XXH64_digest(&dctx->xxhState);
+            U32 const check32 = MEM_readLE32(src);   /* srcSize == 4, guaranteed by dctx->expected */
+            if (check32 != h32) return ERROR(checksum_wrong);
+            dctx->expected = 0;
+            dctx->stage = ZSTDds_getFrameHeaderSize;
+            return 0;
+        }
+    case ZSTDds_decodeSkippableHeader:
+        {   memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_prefix, src, dctx->expected);
+            dctx->expected = MEM_readLE32(dctx->headerBuffer + 4);
+            dctx->stage = ZSTDds_skipFrame;
+            return 0;
+        }
+    case ZSTDds_skipFrame:
+        {   dctx->expected = 0;
+            dctx->stage = ZSTDds_getFrameHeaderSize;
+            return 0;
+        }
+    default:
+        return ERROR(GENERIC);   /* impossible */
+    }
+}
+
+
+static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+    dctx->dictEnd = dctx->previousDstEnd;
+    dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
+    dctx->base = dict;
+    dctx->previousDstEnd = (const char*)dict + dictSize;
+    return 0;
+}
+
+static size_t ZSTD_loadEntropy(ZSTD_DCtx* dctx, const void* const dict, size_t const dictSize)
+{
+    const BYTE* dictPtr = (const BYTE*)dict;
+    const BYTE* const dictEnd = dictPtr + dictSize;
+
+    {   size_t const hSize = HUF_readDTableX4(dctx->hufTable, dict, dictSize);
+        if (HUF_isError(hSize)) return ERROR(dictionary_corrupted);
+        dictPtr += hSize;
+    }
+
+    {   short offcodeNCount[MaxOff+1];
+        U32 offcodeMaxValue=MaxOff, offcodeLog;
+        size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
+        if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
+        if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
+        CHECK_E(FSE_buildDTable(dctx->OFTable, offcodeNCount, offcodeMaxValue, offcodeLog), dictionary_corrupted);
+        dictPtr += offcodeHeaderSize;
+    }
+
+    {   short matchlengthNCount[MaxML+1];
+        unsigned matchlengthMaxValue = MaxML, matchlengthLog;
+        size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
+        if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
+        if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
+        CHECK_E(FSE_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog), dictionary_corrupted);
+        dictPtr += matchlengthHeaderSize;
+    }
+
+    {   short litlengthNCount[MaxLL+1];
+        unsigned litlengthMaxValue = MaxLL, litlengthLog;
+        size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
+        if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
+        if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
+        CHECK_E(FSE_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog), dictionary_corrupted);
+        dictPtr += litlengthHeaderSize;
+    }
+
+    if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
+    dctx->rep[0] = MEM_readLE32(dictPtr+0); if (dctx->rep[0] >= dictSize) return ERROR(dictionary_corrupted);
+    dctx->rep[1] = MEM_readLE32(dictPtr+4); if (dctx->rep[1] >= dictSize) return ERROR(dictionary_corrupted);
+    dctx->rep[2] = MEM_readLE32(dictPtr+8); if (dctx->rep[2] >= dictSize) return ERROR(dictionary_corrupted);
+    dictPtr += 12;
+
+    dctx->litEntropy = dctx->fseEntropy = 1;
+    return dictPtr - (const BYTE*)dict;
+}
+
+static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+    if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize);
+    {   U32 const magic = MEM_readLE32(dict);
+        if (magic != ZSTD_DICT_MAGIC) {
+            return ZSTD_refDictContent(dctx, dict, dictSize);   /* pure content mode */
+    }   }
+    dctx->dictID = MEM_readLE32((const char*)dict + 4);
+
+    /* load entropy tables */
+    dict = (const char*)dict + 8;
+    dictSize -= 8;
+    {   size_t const eSize = ZSTD_loadEntropy(dctx, dict, dictSize);
+        if (ZSTD_isError(eSize)) return ERROR(dictionary_corrupted);
+        dict = (const char*)dict + eSize;
+        dictSize -= eSize;
+    }
+
+    /* reference dictionary content */
+    return ZSTD_refDictContent(dctx, dict, dictSize);
+}
+
+size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
+{
+    CHECK_F(ZSTD_decompressBegin(dctx));
+    if (dict && dictSize) CHECK_E(ZSTD_decompress_insertDictionary(dctx, dict, dictSize), dictionary_corrupted);
+    return 0;
+}
+
+
+/* ======   ZSTD_DDict   ====== */
+
+struct ZSTD_DDict_s {
+    void* dict;
+    size_t dictSize;
+    ZSTD_DCtx* refContext;
+};  /* typedef'd to ZSTD_DDict within "zstd.h" */
+
+ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize, ZSTD_customMem customMem)
+{
+    if (!customMem.customAlloc && !customMem.customFree) customMem = defaultCustomMem;
+    if (!customMem.customAlloc || !customMem.customFree) return NULL;
+
+    {   ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_malloc(sizeof(ZSTD_DDict), customMem);
+        void* const dictContent = ZSTD_malloc(dictSize, customMem);
+        ZSTD_DCtx* const dctx = ZSTD_createDCtx_advanced(customMem);
+
+        if (!dictContent || !ddict || !dctx) {
+            ZSTD_free(dictContent, customMem);
+            ZSTD_free(ddict, customMem);
+            ZSTD_free(dctx, customMem);
+            return NULL;
+        }
+
+        if (dictSize) {
+            memcpy(dictContent, dict, dictSize);
+        }
+        {   size_t const errorCode = ZSTD_decompressBegin_usingDict(dctx, dictContent, dictSize);
+            if (ZSTD_isError(errorCode)) {
+                ZSTD_free(dictContent, customMem);
+                ZSTD_free(ddict, customMem);
+                ZSTD_free(dctx, customMem);
+                return NULL;
+        }   }
+
+        ddict->dict = dictContent;
+        ddict->dictSize = dictSize;
+        ddict->refContext = dctx;
+        return ddict;
+    }
+}
+
+/*! ZSTD_createDDict() :
+*   Create a digested dictionary, ready to start decompression without startup delay.
+*   `dict` can be released after `ZSTD_DDict` creation */
+ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize)
+{
+    ZSTD_customMem const allocator = { NULL, NULL, NULL };
+    return ZSTD_createDDict_advanced(dict, dictSize, allocator);
+}
+
+size_t ZSTD_freeDDict(ZSTD_DDict* ddict)
+{
+    if (ddict==NULL) return 0;   /* support free on NULL */
+    {   ZSTD_customMem const cMem = ddict->refContext->customMem;
+        ZSTD_freeDCtx(ddict->refContext);
+        ZSTD_free(ddict->dict, cMem);
+        ZSTD_free(ddict, cMem);
+        return 0;
+    }
+}
+
+size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict)
+{
+    if (ddict==NULL) return 0;   /* support sizeof on NULL */
+    return sizeof(*ddict) + sizeof(ddict->refContext) + ddict->dictSize;
+}
+
+
+/*! ZSTD_decompress_usingDDict() :
+*   Decompression using a pre-digested Dictionary
+*   Use dictionary without significant overhead. */
+size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
+                                  void* dst, size_t dstCapacity,
+                            const void* src, size_t srcSize,
+                            const ZSTD_DDict* ddict)
+{
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT==1)
+    if (ZSTD_isLegacy(src, srcSize)) return ZSTD_decompressLegacy(dst, dstCapacity, src, srcSize, ddict->dict, ddict->dictSize);
+#endif
+    ZSTD_refDCtx(dctx, ddict->refContext);
+    ZSTD_checkContinuity(dctx, dst);
+    return ZSTD_decompressFrame(dctx, dst, dstCapacity, src, srcSize);
+}
+
+
+/*=====================================
+*   Streaming decompression
+*====================================*/
+
+typedef enum { zdss_init, zdss_loadHeader,
+               zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
+
+/* *** Resource management *** */
+struct ZSTD_DStream_s {
+    ZSTD_DCtx* dctx;
+    ZSTD_DDict* ddictLocal;
+    const ZSTD_DDict* ddict;
+    ZSTD_frameParams fParams;
+    ZSTD_dStreamStage stage;
+    char*  inBuff;
+    size_t inBuffSize;
+    size_t inPos;
+    size_t maxWindowSize;
+    char*  outBuff;
+    size_t outBuffSize;
+    size_t outStart;
+    size_t outEnd;
+    size_t blockSize;
+    BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];   /* tmp buffer to store frame header */
+    size_t lhSize;
+    ZSTD_customMem customMem;
+    void* legacyContext;
+    U32 previousLegacyVersion;
+    U32 legacyVersion;
+    U32 hostageByte;
+};   /* typedef'd to ZSTD_DStream within "zstd.h" */
+
+
+ZSTD_DStream* ZSTD_createDStream(void)
+{
+    return ZSTD_createDStream_advanced(defaultCustomMem);
+}
+
+ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem)
+{
+    ZSTD_DStream* zds;
+
+    if (!customMem.customAlloc && !customMem.customFree) customMem = defaultCustomMem;
+    if (!customMem.customAlloc || !customMem.customFree) return NULL;
+
+    zds = (ZSTD_DStream*) ZSTD_malloc(sizeof(ZSTD_DStream), customMem);
+    if (zds==NULL) return NULL;
+    memset(zds, 0, sizeof(ZSTD_DStream));
+    memcpy(&zds->customMem, &customMem, sizeof(ZSTD_customMem));
+    zds->dctx = ZSTD_createDCtx_advanced(customMem);
+    if (zds->dctx == NULL) { ZSTD_freeDStream(zds); return NULL; }
+    zds->stage = zdss_init;
+    zds->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
+    return zds;
+}
+
+size_t ZSTD_freeDStream(ZSTD_DStream* zds)
+{
+    if (zds==NULL) return 0;   /* support free on null */
+    {   ZSTD_customMem const cMem = zds->customMem;
+        ZSTD_freeDCtx(zds->dctx);
+        ZSTD_freeDDict(zds->ddictLocal);
+        ZSTD_free(zds->inBuff, cMem);
+        ZSTD_free(zds->outBuff, cMem);
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
+        if (zds->legacyContext)
+            ZSTD_freeLegacyStreamContext(zds->legacyContext, zds->previousLegacyVersion);
+#endif
+        ZSTD_free(zds, cMem);
+        return 0;
+    }
+}
+
+
+/* *** Initialization *** */
+
+size_t ZSTD_DStreamInSize(void)  { return ZSTD_BLOCKSIZE_ABSOLUTEMAX + ZSTD_blockHeaderSize; }
+size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
+
+size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize)
+{
+    zds->stage = zdss_loadHeader;
+    zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
+    ZSTD_freeDDict(zds->ddictLocal);
+    if (dict) {
+        zds->ddictLocal = ZSTD_createDDict(dict, dictSize);
+        if (zds->ddictLocal == NULL) return ERROR(memory_allocation);
+    } else zds->ddictLocal = NULL;
+    zds->ddict = zds->ddictLocal;
+    zds->legacyVersion = 0;
+    zds->hostageByte = 0;
+    return ZSTD_frameHeaderSize_prefix;
+}
+
+size_t ZSTD_initDStream(ZSTD_DStream* zds)
+{
+    return ZSTD_initDStream_usingDict(zds, NULL, 0);
+}
+
+size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict)  /**< note : ddict will just be referenced, and must outlive decompression session */
+{
+    size_t const initResult = ZSTD_initDStream(zds);
+    zds->ddict = ddict;
+    return initResult;
+}
+
+size_t ZSTD_resetDStream(ZSTD_DStream* zds)
+{
+    zds->stage = zdss_loadHeader;
+    zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
+    zds->legacyVersion = 0;
+    zds->hostageByte = 0;
+    return ZSTD_frameHeaderSize_prefix;
+}
+
+size_t ZSTD_setDStreamParameter(ZSTD_DStream* zds,
+                                ZSTD_DStreamParameter_e paramType, unsigned paramValue)
+{
+    switch(paramType)
+    {
+        default : return ERROR(parameter_unknown);
+        case ZSTDdsp_maxWindowSize : zds->maxWindowSize = paramValue ? paramValue : (U32)(-1); break;
+    }
+    return 0;
+}
+
+
+size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds)
+{
+    if (zds==NULL) return 0;   /* support sizeof on NULL */
+    return sizeof(*zds) + ZSTD_sizeof_DCtx(zds->dctx) + ZSTD_sizeof_DDict(zds->ddictLocal) + zds->inBuffSize + zds->outBuffSize;
+}
+
+
+/* *****   Decompression   ***** */
+
+MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
+{
+    size_t const length = MIN(dstCapacity, srcSize);
+    memcpy(dst, src, length);
+    return length;
+}
+
+
+size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
+{
+    const char* const istart = (const char*)(input->src) + input->pos;
+    const char* const iend = (const char*)(input->src) + input->size;
+    const char* ip = istart;
+    char* const ostart = (char*)(output->dst) + output->pos;
+    char* const oend = (char*)(output->dst) + output->size;
+    char* op = ostart;
+    U32 someMoreWork = 1;
+
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
+    if (zds->legacyVersion)
+        return ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input);
+#endif
+
+    while (someMoreWork) {
+        switch(zds->stage)
+        {
+        case zdss_init :
+            return ERROR(init_missing);
+
+        case zdss_loadHeader :
+            {   size_t const hSize = ZSTD_getFrameParams(&zds->fParams, zds->headerBuffer, zds->lhSize);
+                if (ZSTD_isError(hSize))
+#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
+                {   U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart);
+                    if (legacyVersion) {
+                        const void* const dict = zds->ddict ? zds->ddict->dict : NULL;
+                        size_t const dictSize = zds->ddict ? zds->ddict->dictSize : 0;
+                        CHECK_F(ZSTD_initLegacyStream(&zds->legacyContext, zds->previousLegacyVersion, legacyVersion,
+                                                       dict, dictSize));
+                        zds->legacyVersion = zds->previousLegacyVersion = legacyVersion;
+                        return ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input);
+                    } else {
+                        return hSize; /* error */
+                }   }
+#else
+                return hSize;
+#endif
+                if (hSize != 0) {   /* need more input */
+                    size_t const toLoad = hSize - zds->lhSize;   /* if hSize!=0, hSize > zds->lhSize */
+                    if (toLoad > (size_t)(iend-ip)) {   /* not enough input to load full header */
+                        memcpy(zds->headerBuffer + zds->lhSize, ip, iend-ip);
+                        zds->lhSize += iend-ip;
+                        input->pos = input->size;
+                        return (MAX(ZSTD_frameHeaderSize_min, hSize) - zds->lhSize) + ZSTD_blockHeaderSize;   /* remaining header bytes + next block header */
+                    }
+                    memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad;
+                    break;
+            }   }
+
+            /* Consume header */
+            {   const ZSTD_DCtx* refContext = zds->ddict ? zds->ddict->refContext : NULL;
+                ZSTD_refDCtx(zds->dctx, refContext);
+            }
+            {   size_t const h1Size = ZSTD_nextSrcSizeToDecompress(zds->dctx);  /* == ZSTD_frameHeaderSize_prefix */
+                CHECK_F(ZSTD_decompressContinue(zds->dctx, NULL, 0, zds->headerBuffer, h1Size));
+                {   size_t const h2Size = ZSTD_nextSrcSizeToDecompress(zds->dctx);
+                    CHECK_F(ZSTD_decompressContinue(zds->dctx, NULL, 0, zds->headerBuffer+h1Size, h2Size));
+            }   }
+
+            zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
+            if (zds->fParams.windowSize > zds->maxWindowSize) return ERROR(frameParameter_windowTooLarge);
+
+            /* Adapt buffer sizes to frame header instructions */
+            {   size_t const blockSize = MIN(zds->fParams.windowSize, ZSTD_BLOCKSIZE_ABSOLUTEMAX);
+                size_t const neededOutSize = zds->fParams.windowSize + blockSize;
+                zds->blockSize = blockSize;
+                if (zds->inBuffSize < blockSize) {
+                    ZSTD_free(zds->inBuff, zds->customMem);
+                    zds->inBuffSize = blockSize;
+                    zds->inBuff = (char*)ZSTD_malloc(blockSize, zds->customMem);
+                    if (zds->inBuff == NULL) return ERROR(memory_allocation);
+                }
+                if (zds->outBuffSize < neededOutSize) {
+                    ZSTD_free(zds->outBuff, zds->customMem);
+                    zds->outBuffSize = neededOutSize;
+                    zds->outBuff = (char*)ZSTD_malloc(neededOutSize, zds->customMem);
+                    if (zds->outBuff == NULL) return ERROR(memory_allocation);
+            }   }
+            zds->stage = zdss_read;
+            /* pass-through */
+
+        case zdss_read:
+            {   size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds->dctx);
+                if (neededInSize==0) {  /* end of frame */
+                    zds->stage = zdss_init;
+                    someMoreWork = 0;
+                    break;
+                }
+                if ((size_t)(iend-ip) >= neededInSize) {  /* decode directly from src */
+                    const int isSkipFrame = ZSTD_isSkipFrame(zds->dctx);
+                    size_t const decodedSize = ZSTD_decompressContinue(zds->dctx,
+                        zds->outBuff + zds->outStart, (isSkipFrame ? 0 : zds->outBuffSize - zds->outStart),
+                        ip, neededInSize);
+                    if (ZSTD_isError(decodedSize)) return decodedSize;
+                    ip += neededInSize;
+                    if (!decodedSize && !isSkipFrame) break;   /* this was just a header */
+                    zds->outEnd = zds->outStart + decodedSize;
+                    zds->stage = zdss_flush;
+                    break;
+                }
+                if (ip==iend) { someMoreWork = 0; break; }   /* no more input */
+                zds->stage = zdss_load;
+                /* pass-through */
+            }
+
+        case zdss_load:
+            {   size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds->dctx);
+                size_t const toLoad = neededInSize - zds->inPos;   /* should always be <= remaining space within inBuff */
+                size_t loadedSize;
+                if (toLoad > zds->inBuffSize - zds->inPos) return ERROR(corruption_detected);   /* should never happen */
+                loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, iend-ip);
+                ip += loadedSize;
+                zds->inPos += loadedSize;
+                if (loadedSize < toLoad) { someMoreWork = 0; break; }   /* not enough input, wait for more */
+
+                /* decode loaded input */
+                {  const int isSkipFrame = ZSTD_isSkipFrame(zds->dctx);
+                   size_t const decodedSize = ZSTD_decompressContinue(zds->dctx,
+                        zds->outBuff + zds->outStart, zds->outBuffSize - zds->outStart,
+                        zds->inBuff, neededInSize);
+                    if (ZSTD_isError(decodedSize)) return decodedSize;
+                    zds->inPos = 0;   /* input is consumed */
+                    if (!decodedSize && !isSkipFrame) { zds->stage = zdss_read; break; }   /* this was just a header */
+                    zds->outEnd = zds->outStart +  decodedSize;
+                    zds->stage = zdss_flush;
+                    /* pass-through */
+            }   }
+
+        case zdss_flush:
+            {   size_t const toFlushSize = zds->outEnd - zds->outStart;
+                size_t const flushedSize = ZSTD_limitCopy(op, oend-op, zds->outBuff + zds->outStart, toFlushSize);
+                op += flushedSize;
+                zds->outStart += flushedSize;
+                if (flushedSize == toFlushSize) {  /* flush completed */
+                    zds->stage = zdss_read;
+                    if (zds->outStart + zds->blockSize > zds->outBuffSize)
+                        zds->outStart = zds->outEnd = 0;
+                    break;
+                }
+                /* cannot complete flush */
+                someMoreWork = 0;
+                break;
+            }
+        default: return ERROR(GENERIC);   /* impossible */
+    }   }
+
+    /* result */
+    input->pos += (size_t)(ip-istart);
+    output->pos += (size_t)(op-ostart);
+    {   size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds->dctx);
+        if (!nextSrcSizeHint) {   /* frame fully decoded */
+            if (zds->outEnd == zds->outStart) {  /* output fully flushed */
+                if (zds->hostageByte) {
+                    if (input->pos >= input->size) { zds->stage = zdss_read; return 1; }  /* can't release hostage (not present) */
+                    input->pos++;  /* release hostage */
+                }
+                return 0;
+            }
+            if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */
+                input->pos--;   /* note : pos > 0, otherwise, impossible to finish reading last block */
+                zds->hostageByte=1;
+            }
+            return 1;
+        }
+        nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds->dctx) == ZSTDnit_block);   /* preload header of next block */
+        if (zds->inPos > nextSrcSizeHint) return ERROR(GENERIC);   /* should never happen */
+        nextSrcSizeHint -= zds->inPos;   /* already loaded*/
+        return nextSrcSizeHint;
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/dictBuilder/divsufsort.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,1913 @@
+/*
+ * divsufsort.c for libdivsufsort-lite
+ * Copyright (c) 2003-2008 Yuta Mori All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person
+ * obtaining a copy of this software and associated documentation
+ * files (the "Software"), to deal in the Software without
+ * restriction, including without limitation the rights to use,
+ * copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following
+ * conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+ * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/*- Compiler specifics -*/
+#ifdef __clang__
+#pragma clang diagnostic ignored "-Wshorten-64-to-32"
+#endif
+
+#if defined(_MSC_VER)
+#  pragma warning(disable : 4244)
+#  pragma warning(disable : 4127)    /* C4127 : Condition expression is constant */
+#endif
+
+
+/*- Dependencies -*/
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "divsufsort.h"
+
+/*- Constants -*/
+#if defined(INLINE)
+# undef INLINE
+#endif
+#if !defined(INLINE)
+# define INLINE __inline
+#endif
+#if defined(ALPHABET_SIZE) && (ALPHABET_SIZE < 1)
+# undef ALPHABET_SIZE
+#endif
+#if !defined(ALPHABET_SIZE)
+# define ALPHABET_SIZE (256)
+#endif
+#define BUCKET_A_SIZE (ALPHABET_SIZE)
+#define BUCKET_B_SIZE (ALPHABET_SIZE * ALPHABET_SIZE)
+#if defined(SS_INSERTIONSORT_THRESHOLD)
+# if SS_INSERTIONSORT_THRESHOLD < 1
+#  undef SS_INSERTIONSORT_THRESHOLD
+#  define SS_INSERTIONSORT_THRESHOLD (1)
+# endif
+#else
+# define SS_INSERTIONSORT_THRESHOLD (8)
+#endif
+#if defined(SS_BLOCKSIZE)
+# if SS_BLOCKSIZE < 0
+#  undef SS_BLOCKSIZE
+#  define SS_BLOCKSIZE (0)
+# elif 32768 <= SS_BLOCKSIZE
+#  undef SS_BLOCKSIZE
+#  define SS_BLOCKSIZE (32767)
+# endif
+#else
+# define SS_BLOCKSIZE (1024)
+#endif
+/* minstacksize = log(SS_BLOCKSIZE) / log(3) * 2 */
+#if SS_BLOCKSIZE == 0
+# define SS_MISORT_STACKSIZE (96)
+#elif SS_BLOCKSIZE <= 4096
+# define SS_MISORT_STACKSIZE (16)
+#else
+# define SS_MISORT_STACKSIZE (24)
+#endif
+#define SS_SMERGE_STACKSIZE (32)
+#define TR_INSERTIONSORT_THRESHOLD (8)
+#define TR_STACKSIZE (64)
+
+
+/*- Macros -*/
+#ifndef SWAP
+# define SWAP(_a, _b) do { t = (_a); (_a) = (_b); (_b) = t; } while(0)
+#endif /* SWAP */
+#ifndef MIN
+# define MIN(_a, _b) (((_a) < (_b)) ? (_a) : (_b))
+#endif /* MIN */
+#ifndef MAX
+# define MAX(_a, _b) (((_a) > (_b)) ? (_a) : (_b))
+#endif /* MAX */
+#define STACK_PUSH(_a, _b, _c, _d)\
+  do {\
+    assert(ssize < STACK_SIZE);\
+    stack[ssize].a = (_a), stack[ssize].b = (_b),\
+    stack[ssize].c = (_c), stack[ssize++].d = (_d);\
+  } while(0)
+#define STACK_PUSH5(_a, _b, _c, _d, _e)\
+  do {\
+    assert(ssize < STACK_SIZE);\
+    stack[ssize].a = (_a), stack[ssize].b = (_b),\
+    stack[ssize].c = (_c), stack[ssize].d = (_d), stack[ssize++].e = (_e);\
+  } while(0)
+#define STACK_POP(_a, _b, _c, _d)\
+  do {\
+    assert(0 <= ssize);\
+    if(ssize == 0) { return; }\
+    (_a) = stack[--ssize].a, (_b) = stack[ssize].b,\
+    (_c) = stack[ssize].c, (_d) = stack[ssize].d;\
+  } while(0)
+#define STACK_POP5(_a, _b, _c, _d, _e)\
+  do {\
+    assert(0 <= ssize);\
+    if(ssize == 0) { return; }\
+    (_a) = stack[--ssize].a, (_b) = stack[ssize].b,\
+    (_c) = stack[ssize].c, (_d) = stack[ssize].d, (_e) = stack[ssize].e;\
+  } while(0)
+#define BUCKET_A(_c0) bucket_A[(_c0)]
+#if ALPHABET_SIZE == 256
+#define BUCKET_B(_c0, _c1) (bucket_B[((_c1) << 8) | (_c0)])
+#define BUCKET_BSTAR(_c0, _c1) (bucket_B[((_c0) << 8) | (_c1)])
+#else
+#define BUCKET_B(_c0, _c1) (bucket_B[(_c1) * ALPHABET_SIZE + (_c0)])
+#define BUCKET_BSTAR(_c0, _c1) (bucket_B[(_c0) * ALPHABET_SIZE + (_c1)])
+#endif
+
+
+/*- Private Functions -*/
+
+static const int lg_table[256]= {
+ -1,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
+  5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
+  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
+  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
+  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
+};
+
+#if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE)
+
+static INLINE
+int
+ss_ilg(int n) {
+#if SS_BLOCKSIZE == 0
+  return (n & 0xffff0000) ?
+          ((n & 0xff000000) ?
+            24 + lg_table[(n >> 24) & 0xff] :
+            16 + lg_table[(n >> 16) & 0xff]) :
+          ((n & 0x0000ff00) ?
+             8 + lg_table[(n >>  8) & 0xff] :
+             0 + lg_table[(n >>  0) & 0xff]);
+#elif SS_BLOCKSIZE < 256
+  return lg_table[n];
+#else
+  return (n & 0xff00) ?
+          8 + lg_table[(n >> 8) & 0xff] :
+          0 + lg_table[(n >> 0) & 0xff];
+#endif
+}
+
+#endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */
+
+#if SS_BLOCKSIZE != 0
+
+static const int sqq_table[256] = {
+  0,  16,  22,  27,  32,  35,  39,  42,  45,  48,  50,  53,  55,  57,  59,  61,
+ 64,  65,  67,  69,  71,  73,  75,  76,  78,  80,  81,  83,  84,  86,  87,  89,
+ 90,  91,  93,  94,  96,  97,  98,  99, 101, 102, 103, 104, 106, 107, 108, 109,
+110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
+128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
+143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155,
+156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168,
+169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180,
+181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191,
+192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201,
+202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211,
+212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221,
+221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230,
+230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238,
+239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247,
+247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255
+};
+
+static INLINE
+int
+ss_isqrt(int x) {
+  int y, e;
+
+  if(x >= (SS_BLOCKSIZE * SS_BLOCKSIZE)) { return SS_BLOCKSIZE; }
+  e = (x & 0xffff0000) ?
+        ((x & 0xff000000) ?
+          24 + lg_table[(x >> 24) & 0xff] :
+          16 + lg_table[(x >> 16) & 0xff]) :
+        ((x & 0x0000ff00) ?
+           8 + lg_table[(x >>  8) & 0xff] :
+           0 + lg_table[(x >>  0) & 0xff]);
+
+  if(e >= 16) {
+    y = sqq_table[x >> ((e - 6) - (e & 1))] << ((e >> 1) - 7);
+    if(e >= 24) { y = (y + 1 + x / y) >> 1; }
+    y = (y + 1 + x / y) >> 1;
+  } else if(e >= 8) {
+    y = (sqq_table[x >> ((e - 6) - (e & 1))] >> (7 - (e >> 1))) + 1;
+  } else {
+    return sqq_table[x] >> 4;
+  }
+
+  return (x < (y * y)) ? y - 1 : y;
+}
+
+#endif /* SS_BLOCKSIZE != 0 */
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Compares two suffixes. */
+static INLINE
+int
+ss_compare(const unsigned char *T,
+           const int *p1, const int *p2,
+           int depth) {
+  const unsigned char *U1, *U2, *U1n, *U2n;
+
+  for(U1 = T + depth + *p1,
+      U2 = T + depth + *p2,
+      U1n = T + *(p1 + 1) + 2,
+      U2n = T + *(p2 + 1) + 2;
+      (U1 < U1n) && (U2 < U2n) && (*U1 == *U2);
+      ++U1, ++U2) {
+  }
+
+  return U1 < U1n ?
+        (U2 < U2n ? *U1 - *U2 : 1) :
+        (U2 < U2n ? -1 : 0);
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+#if (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1)
+
+/* Insertionsort for small size groups */
+static
+void
+ss_insertionsort(const unsigned char *T, const int *PA,
+                 int *first, int *last, int depth) {
+  int *i, *j;
+  int t;
+  int r;
+
+  for(i = last - 2; first <= i; --i) {
+    for(t = *i, j = i + 1; 0 < (r = ss_compare(T, PA + t, PA + *j, depth));) {
+      do { *(j - 1) = *j; } while((++j < last) && (*j < 0));
+      if(last <= j) { break; }
+    }
+    if(r == 0) { *j = ~*j; }
+    *(j - 1) = t;
+  }
+}
+
+#endif /* (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1) */
+
+
+/*---------------------------------------------------------------------------*/
+
+#if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE)
+
+static INLINE
+void
+ss_fixdown(const unsigned char *Td, const int *PA,
+           int *SA, int i, int size) {
+  int j, k;
+  int v;
+  int c, d, e;
+
+  for(v = SA[i], c = Td[PA[v]]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) {
+    d = Td[PA[SA[k = j++]]];
+    if(d < (e = Td[PA[SA[j]]])) { k = j; d = e; }
+    if(d <= c) { break; }
+  }
+  SA[i] = v;
+}
+
+/* Simple top-down heapsort. */
+static
+void
+ss_heapsort(const unsigned char *Td, const int *PA, int *SA, int size) {
+  int i, m;
+  int t;
+
+  m = size;
+  if((size % 2) == 0) {
+    m--;
+    if(Td[PA[SA[m / 2]]] < Td[PA[SA[m]]]) { SWAP(SA[m], SA[m / 2]); }
+  }
+
+  for(i = m / 2 - 1; 0 <= i; --i) { ss_fixdown(Td, PA, SA, i, m); }
+  if((size % 2) == 0) { SWAP(SA[0], SA[m]); ss_fixdown(Td, PA, SA, 0, m); }
+  for(i = m - 1; 0 < i; --i) {
+    t = SA[0], SA[0] = SA[i];
+    ss_fixdown(Td, PA, SA, 0, i);
+    SA[i] = t;
+  }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Returns the median of three elements. */
+static INLINE
+int *
+ss_median3(const unsigned char *Td, const int *PA,
+           int *v1, int *v2, int *v3) {
+  int *t;
+  if(Td[PA[*v1]] > Td[PA[*v2]]) { SWAP(v1, v2); }
+  if(Td[PA[*v2]] > Td[PA[*v3]]) {
+    if(Td[PA[*v1]] > Td[PA[*v3]]) { return v1; }
+    else { return v3; }
+  }
+  return v2;
+}
+
+/* Returns the median of five elements. */
+static INLINE
+int *
+ss_median5(const unsigned char *Td, const int *PA,
+           int *v1, int *v2, int *v3, int *v4, int *v5) {
+  int *t;
+  if(Td[PA[*v2]] > Td[PA[*v3]]) { SWAP(v2, v3); }
+  if(Td[PA[*v4]] > Td[PA[*v5]]) { SWAP(v4, v5); }
+  if(Td[PA[*v2]] > Td[PA[*v4]]) { SWAP(v2, v4); SWAP(v3, v5); }
+  if(Td[PA[*v1]] > Td[PA[*v3]]) { SWAP(v1, v3); }
+  if(Td[PA[*v1]] > Td[PA[*v4]]) { SWAP(v1, v4); SWAP(v3, v5); }
+  if(Td[PA[*v3]] > Td[PA[*v4]]) { return v4; }
+  return v3;
+}
+
+/* Returns the pivot element. */
+static INLINE
+int *
+ss_pivot(const unsigned char *Td, const int *PA, int *first, int *last) {
+  int *middle;
+  int t;
+
+  t = last - first;
+  middle = first + t / 2;
+
+  if(t <= 512) {
+    if(t <= 32) {
+      return ss_median3(Td, PA, first, middle, last - 1);
+    } else {
+      t >>= 2;
+      return ss_median5(Td, PA, first, first + t, middle, last - 1 - t, last - 1);
+    }
+  }
+  t >>= 3;
+  first  = ss_median3(Td, PA, first, first + t, first + (t << 1));
+  middle = ss_median3(Td, PA, middle - t, middle, middle + t);
+  last   = ss_median3(Td, PA, last - 1 - (t << 1), last - 1 - t, last - 1);
+  return ss_median3(Td, PA, first, middle, last);
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Binary partition for substrings. */
+static INLINE
+int *
+ss_partition(const int *PA,
+                    int *first, int *last, int depth) {
+  int *a, *b;
+  int t;
+  for(a = first - 1, b = last;;) {
+    for(; (++a < b) && ((PA[*a] + depth) >= (PA[*a + 1] + 1));) { *a = ~*a; }
+    for(; (a < --b) && ((PA[*b] + depth) <  (PA[*b + 1] + 1));) { }
+    if(b <= a) { break; }
+    t = ~*b;
+    *b = *a;
+    *a = t;
+  }
+  if(first < a) { *first = ~*first; }
+  return a;
+}
+
+/* Multikey introsort for medium size groups. */
+static
+void
+ss_mintrosort(const unsigned char *T, const int *PA,
+              int *first, int *last,
+              int depth) {
+#define STACK_SIZE SS_MISORT_STACKSIZE
+  struct { int *a, *b, c; int d; } stack[STACK_SIZE];
+  const unsigned char *Td;
+  int *a, *b, *c, *d, *e, *f;
+  int s, t;
+  int ssize;
+  int limit;
+  int v, x = 0;
+
+  for(ssize = 0, limit = ss_ilg(last - first);;) {
+
+    if((last - first) <= SS_INSERTIONSORT_THRESHOLD) {
+#if 1 < SS_INSERTIONSORT_THRESHOLD
+      if(1 < (last - first)) { ss_insertionsort(T, PA, first, last, depth); }
+#endif
+      STACK_POP(first, last, depth, limit);
+      continue;
+    }
+
+    Td = T + depth;
+    if(limit-- == 0) { ss_heapsort(Td, PA, first, last - first); }
+    if(limit < 0) {
+      for(a = first + 1, v = Td[PA[*first]]; a < last; ++a) {
+        if((x = Td[PA[*a]]) != v) {
+          if(1 < (a - first)) { break; }
+          v = x;
+          first = a;
+        }
+      }
+      if(Td[PA[*first] - 1] < v) {
+        first = ss_partition(PA, first, a, depth);
+      }
+      if((a - first) <= (last - a)) {
+        if(1 < (a - first)) {
+          STACK_PUSH(a, last, depth, -1);
+          last = a, depth += 1, limit = ss_ilg(a - first);
+        } else {
+          first = a, limit = -1;
+        }
+      } else {
+        if(1 < (last - a)) {
+          STACK_PUSH(first, a, depth + 1, ss_ilg(a - first));
+          first = a, limit = -1;
+        } else {
+          last = a, depth += 1, limit = ss_ilg(a - first);
+        }
+      }
+      continue;
+    }
+
+    /* choose pivot */
+    a = ss_pivot(Td, PA, first, last);
+    v = Td[PA[*a]];
+    SWAP(*first, *a);
+
+    /* partition */
+    for(b = first; (++b < last) && ((x = Td[PA[*b]]) == v);) { }
+    if(((a = b) < last) && (x < v)) {
+      for(; (++b < last) && ((x = Td[PA[*b]]) <= v);) {
+        if(x == v) { SWAP(*b, *a); ++a; }
+      }
+    }
+    for(c = last; (b < --c) && ((x = Td[PA[*c]]) == v);) { }
+    if((b < (d = c)) && (x > v)) {
+      for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) {
+        if(x == v) { SWAP(*c, *d); --d; }
+      }
+    }
+    for(; b < c;) {
+      SWAP(*b, *c);
+      for(; (++b < c) && ((x = Td[PA[*b]]) <= v);) {
+        if(x == v) { SWAP(*b, *a); ++a; }
+      }
+      for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) {
+        if(x == v) { SWAP(*c, *d); --d; }
+      }
+    }
+
+    if(a <= d) {
+      c = b - 1;
+
+      if((s = a - first) > (t = b - a)) { s = t; }
+      for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
+      if((s = d - c) > (t = last - d - 1)) { s = t; }
+      for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
+
+      a = first + (b - a), c = last - (d - c);
+      b = (v <= Td[PA[*a] - 1]) ? a : ss_partition(PA, a, c, depth);
+
+      if((a - first) <= (last - c)) {
+        if((last - c) <= (c - b)) {
+          STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
+          STACK_PUSH(c, last, depth, limit);
+          last = a;
+        } else if((a - first) <= (c - b)) {
+          STACK_PUSH(c, last, depth, limit);
+          STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
+          last = a;
+        } else {
+          STACK_PUSH(c, last, depth, limit);
+          STACK_PUSH(first, a, depth, limit);
+          first = b, last = c, depth += 1, limit = ss_ilg(c - b);
+        }
+      } else {
+        if((a - first) <= (c - b)) {
+          STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
+          STACK_PUSH(first, a, depth, limit);
+          first = c;
+        } else if((last - c) <= (c - b)) {
+          STACK_PUSH(first, a, depth, limit);
+          STACK_PUSH(b, c, depth + 1, ss_ilg(c - b));
+          first = c;
+        } else {
+          STACK_PUSH(first, a, depth, limit);
+          STACK_PUSH(c, last, depth, limit);
+          first = b, last = c, depth += 1, limit = ss_ilg(c - b);
+        }
+      }
+    } else {
+      limit += 1;
+      if(Td[PA[*first] - 1] < v) {
+        first = ss_partition(PA, first, last, depth);
+        limit = ss_ilg(last - first);
+      }
+      depth += 1;
+    }
+  }
+#undef STACK_SIZE
+}
+
+#endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */
+
+
+/*---------------------------------------------------------------------------*/
+
+#if SS_BLOCKSIZE != 0
+
+static INLINE
+void
+ss_blockswap(int *a, int *b, int n) {
+  int t;
+  for(; 0 < n; --n, ++a, ++b) {
+    t = *a, *a = *b, *b = t;
+  }
+}
+
+static INLINE
+void
+ss_rotate(int *first, int *middle, int *last) {
+  int *a, *b, t;
+  int l, r;
+  l = middle - first, r = last - middle;
+  for(; (0 < l) && (0 < r);) {
+    if(l == r) { ss_blockswap(first, middle, l); break; }
+    if(l < r) {
+      a = last - 1, b = middle - 1;
+      t = *a;
+      do {
+        *a-- = *b, *b-- = *a;
+        if(b < first) {
+          *a = t;
+          last = a;
+          if((r -= l + 1) <= l) { break; }
+          a -= 1, b = middle - 1;
+          t = *a;
+        }
+      } while(1);
+    } else {
+      a = first, b = middle;
+      t = *a;
+      do {
+        *a++ = *b, *b++ = *a;
+        if(last <= b) {
+          *a = t;
+          first = a + 1;
+          if((l -= r + 1) <= r) { break; }
+          a += 1, b = middle;
+          t = *a;
+        }
+      } while(1);
+    }
+  }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+static
+void
+ss_inplacemerge(const unsigned char *T, const int *PA,
+                int *first, int *middle, int *last,
+                int depth) {
+  const int *p;
+  int *a, *b;
+  int len, half;
+  int q, r;
+  int x;
+
+  for(;;) {
+    if(*(last - 1) < 0) { x = 1; p = PA + ~*(last - 1); }
+    else                { x = 0; p = PA +  *(last - 1); }
+    for(a = first, len = middle - first, half = len >> 1, r = -1;
+        0 < len;
+        len = half, half >>= 1) {
+      b = a + half;
+      q = ss_compare(T, PA + ((0 <= *b) ? *b : ~*b), p, depth);
+      if(q < 0) {
+        a = b + 1;
+        half -= (len & 1) ^ 1;
+      } else {
+        r = q;
+      }
+    }
+    if(a < middle) {
+      if(r == 0) { *a = ~*a; }
+      ss_rotate(a, middle, last);
+      last -= middle - a;
+      middle = a;
+      if(first == middle) { break; }
+    }
+    --last;
+    if(x != 0) { while(*--last < 0) { } }
+    if(middle == last) { break; }
+  }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Merge-forward with internal buffer. */
+static
+void
+ss_mergeforward(const unsigned char *T, const int *PA,
+                int *first, int *middle, int *last,
+                int *buf, int depth) {
+  int *a, *b, *c, *bufend;
+  int t;
+  int r;
+
+  bufend = buf + (middle - first) - 1;
+  ss_blockswap(buf, first, middle - first);
+
+  for(t = *(a = first), b = buf, c = middle;;) {
+    r = ss_compare(T, PA + *b, PA + *c, depth);
+    if(r < 0) {
+      do {
+        *a++ = *b;
+        if(bufend <= b) { *bufend = t; return; }
+        *b++ = *a;
+      } while(*b < 0);
+    } else if(r > 0) {
+      do {
+        *a++ = *c, *c++ = *a;
+        if(last <= c) {
+          while(b < bufend) { *a++ = *b, *b++ = *a; }
+          *a = *b, *b = t;
+          return;
+        }
+      } while(*c < 0);
+    } else {
+      *c = ~*c;
+      do {
+        *a++ = *b;
+        if(bufend <= b) { *bufend = t; return; }
+        *b++ = *a;
+      } while(*b < 0);
+
+      do {
+        *a++ = *c, *c++ = *a;
+        if(last <= c) {
+          while(b < bufend) { *a++ = *b, *b++ = *a; }
+          *a = *b, *b = t;
+          return;
+        }
+      } while(*c < 0);
+    }
+  }
+}
+
+/* Merge-backward with internal buffer. */
+static
+void
+ss_mergebackward(const unsigned char *T, const int *PA,
+                 int *first, int *middle, int *last,
+                 int *buf, int depth) {
+  const int *p1, *p2;
+  int *a, *b, *c, *bufend;
+  int t;
+  int r;
+  int x;
+
+  bufend = buf + (last - middle) - 1;
+  ss_blockswap(buf, middle, last - middle);
+
+  x = 0;
+  if(*bufend < 0)       { p1 = PA + ~*bufend; x |= 1; }
+  else                  { p1 = PA +  *bufend; }
+  if(*(middle - 1) < 0) { p2 = PA + ~*(middle - 1); x |= 2; }
+  else                  { p2 = PA +  *(middle - 1); }
+  for(t = *(a = last - 1), b = bufend, c = middle - 1;;) {
+    r = ss_compare(T, p1, p2, depth);
+    if(0 < r) {
+      if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; }
+      *a-- = *b;
+      if(b <= buf) { *buf = t; break; }
+      *b-- = *a;
+      if(*b < 0) { p1 = PA + ~*b; x |= 1; }
+      else       { p1 = PA +  *b; }
+    } else if(r < 0) {
+      if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; }
+      *a-- = *c, *c-- = *a;
+      if(c < first) {
+        while(buf < b) { *a-- = *b, *b-- = *a; }
+        *a = *b, *b = t;
+        break;
+      }
+      if(*c < 0) { p2 = PA + ~*c; x |= 2; }
+      else       { p2 = PA +  *c; }
+    } else {
+      if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; }
+      *a-- = ~*b;
+      if(b <= buf) { *buf = t; break; }
+      *b-- = *a;
+      if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; }
+      *a-- = *c, *c-- = *a;
+      if(c < first) {
+        while(buf < b) { *a-- = *b, *b-- = *a; }
+        *a = *b, *b = t;
+        break;
+      }
+      if(*b < 0) { p1 = PA + ~*b; x |= 1; }
+      else       { p1 = PA +  *b; }
+      if(*c < 0) { p2 = PA + ~*c; x |= 2; }
+      else       { p2 = PA +  *c; }
+    }
+  }
+}
+
+/* D&C based merge. */
+static
+void
+ss_swapmerge(const unsigned char *T, const int *PA,
+             int *first, int *middle, int *last,
+             int *buf, int bufsize, int depth) {
+#define STACK_SIZE SS_SMERGE_STACKSIZE
+#define GETIDX(a) ((0 <= (a)) ? (a) : (~(a)))
+#define MERGE_CHECK(a, b, c)\
+  do {\
+    if(((c) & 1) ||\
+       (((c) & 2) && (ss_compare(T, PA + GETIDX(*((a) - 1)), PA + *(a), depth) == 0))) {\
+      *(a) = ~*(a);\
+    }\
+    if(((c) & 4) && ((ss_compare(T, PA + GETIDX(*((b) - 1)), PA + *(b), depth) == 0))) {\
+      *(b) = ~*(b);\
+    }\
+  } while(0)
+  struct { int *a, *b, *c; int d; } stack[STACK_SIZE];
+  int *l, *r, *lm, *rm;
+  int m, len, half;
+  int ssize;
+  int check, next;
+
+  for(check = 0, ssize = 0;;) {
+    if((last - middle) <= bufsize) {
+      if((first < middle) && (middle < last)) {
+        ss_mergebackward(T, PA, first, middle, last, buf, depth);
+      }
+      MERGE_CHECK(first, last, check);
+      STACK_POP(first, middle, last, check);
+      continue;
+    }
+
+    if((middle - first) <= bufsize) {
+      if(first < middle) {
+        ss_mergeforward(T, PA, first, middle, last, buf, depth);
+      }
+      MERGE_CHECK(first, last, check);
+      STACK_POP(first, middle, last, check);
+      continue;
+    }
+
+    for(m = 0, len = MIN(middle - first, last - middle), half = len >> 1;
+        0 < len;
+        len = half, half >>= 1) {
+      if(ss_compare(T, PA + GETIDX(*(middle + m + half)),
+                       PA + GETIDX(*(middle - m - half - 1)), depth) < 0) {
+        m += half + 1;
+        half -= (len & 1) ^ 1;
+      }
+    }
+
+    if(0 < m) {
+      lm = middle - m, rm = middle + m;
+      ss_blockswap(lm, middle, m);
+      l = r = middle, next = 0;
+      if(rm < last) {
+        if(*rm < 0) {
+          *rm = ~*rm;
+          if(first < lm) { for(; *--l < 0;) { } next |= 4; }
+          next |= 1;
+        } else if(first < lm) {
+          for(; *r < 0; ++r) { }
+          next |= 2;
+        }
+      }
+
+      if((l - first) <= (last - r)) {
+        STACK_PUSH(r, rm, last, (next & 3) | (check & 4));
+        middle = lm, last = l, check = (check & 3) | (next & 4);
+      } else {
+        if((next & 2) && (r == middle)) { next ^= 6; }
+        STACK_PUSH(first, lm, l, (check & 3) | (next & 4));
+        first = r, middle = rm, check = (next & 3) | (check & 4);
+      }
+    } else {
+      if(ss_compare(T, PA + GETIDX(*(middle - 1)), PA + *middle, depth) == 0) {
+        *middle = ~*middle;
+      }
+      MERGE_CHECK(first, last, check);
+      STACK_POP(first, middle, last, check);
+    }
+  }
+#undef STACK_SIZE
+}
+
+#endif /* SS_BLOCKSIZE != 0 */
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Substring sort */
+static
+void
+sssort(const unsigned char *T, const int *PA,
+       int *first, int *last,
+       int *buf, int bufsize,
+       int depth, int n, int lastsuffix) {
+  int *a;
+#if SS_BLOCKSIZE != 0
+  int *b, *middle, *curbuf;
+  int j, k, curbufsize, limit;
+#endif
+  int i;
+
+  if(lastsuffix != 0) { ++first; }
+
+#if SS_BLOCKSIZE == 0
+  ss_mintrosort(T, PA, first, last, depth);
+#else
+  if((bufsize < SS_BLOCKSIZE) &&
+      (bufsize < (last - first)) &&
+      (bufsize < (limit = ss_isqrt(last - first)))) {
+    if(SS_BLOCKSIZE < limit) { limit = SS_BLOCKSIZE; }
+    buf = middle = last - limit, bufsize = limit;
+  } else {
+    middle = last, limit = 0;
+  }
+  for(a = first, i = 0; SS_BLOCKSIZE < (middle - a); a += SS_BLOCKSIZE, ++i) {
+#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
+    ss_mintrosort(T, PA, a, a + SS_BLOCKSIZE, depth);
+#elif 1 < SS_BLOCKSIZE
+    ss_insertionsort(T, PA, a, a + SS_BLOCKSIZE, depth);
+#endif
+    curbufsize = last - (a + SS_BLOCKSIZE);
+    curbuf = a + SS_BLOCKSIZE;
+    if(curbufsize <= bufsize) { curbufsize = bufsize, curbuf = buf; }
+    for(b = a, k = SS_BLOCKSIZE, j = i; j & 1; b -= k, k <<= 1, j >>= 1) {
+      ss_swapmerge(T, PA, b - k, b, b + k, curbuf, curbufsize, depth);
+    }
+  }
+#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
+  ss_mintrosort(T, PA, a, middle, depth);
+#elif 1 < SS_BLOCKSIZE
+  ss_insertionsort(T, PA, a, middle, depth);
+#endif
+  for(k = SS_BLOCKSIZE; i != 0; k <<= 1, i >>= 1) {
+    if(i & 1) {
+      ss_swapmerge(T, PA, a - k, a, middle, buf, bufsize, depth);
+      a -= k;
+    }
+  }
+  if(limit != 0) {
+#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE
+    ss_mintrosort(T, PA, middle, last, depth);
+#elif 1 < SS_BLOCKSIZE
+    ss_insertionsort(T, PA, middle, last, depth);
+#endif
+    ss_inplacemerge(T, PA, first, middle, last, depth);
+  }
+#endif
+
+  if(lastsuffix != 0) {
+    /* Insert last type B* suffix. */
+    int PAi[2]; PAi[0] = PA[*(first - 1)], PAi[1] = n - 2;
+    for(a = first, i = *(first - 1);
+        (a < last) && ((*a < 0) || (0 < ss_compare(T, &(PAi[0]), PA + *a, depth)));
+        ++a) {
+      *(a - 1) = *a;
+    }
+    *(a - 1) = i;
+  }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+static INLINE
+int
+tr_ilg(int n) {
+  return (n & 0xffff0000) ?
+          ((n & 0xff000000) ?
+            24 + lg_table[(n >> 24) & 0xff] :
+            16 + lg_table[(n >> 16) & 0xff]) :
+          ((n & 0x0000ff00) ?
+             8 + lg_table[(n >>  8) & 0xff] :
+             0 + lg_table[(n >>  0) & 0xff]);
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Simple insertionsort for small size groups. */
+static
+void
+tr_insertionsort(const int *ISAd, int *first, int *last) {
+  int *a, *b;
+  int t, r;
+
+  for(a = first + 1; a < last; ++a) {
+    for(t = *a, b = a - 1; 0 > (r = ISAd[t] - ISAd[*b]);) {
+      do { *(b + 1) = *b; } while((first <= --b) && (*b < 0));
+      if(b < first) { break; }
+    }
+    if(r == 0) { *b = ~*b; }
+    *(b + 1) = t;
+  }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+static INLINE
+void
+tr_fixdown(const int *ISAd, int *SA, int i, int size) {
+  int j, k;
+  int v;
+  int c, d, e;
+
+  for(v = SA[i], c = ISAd[v]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) {
+    d = ISAd[SA[k = j++]];
+    if(d < (e = ISAd[SA[j]])) { k = j; d = e; }
+    if(d <= c) { break; }
+  }
+  SA[i] = v;
+}
+
+/* Simple top-down heapsort. */
+static
+void
+tr_heapsort(const int *ISAd, int *SA, int size) {
+  int i, m;
+  int t;
+
+  m = size;
+  if((size % 2) == 0) {
+    m--;
+    if(ISAd[SA[m / 2]] < ISAd[SA[m]]) { SWAP(SA[m], SA[m / 2]); }
+  }
+
+  for(i = m / 2 - 1; 0 <= i; --i) { tr_fixdown(ISAd, SA, i, m); }
+  if((size % 2) == 0) { SWAP(SA[0], SA[m]); tr_fixdown(ISAd, SA, 0, m); }
+  for(i = m - 1; 0 < i; --i) {
+    t = SA[0], SA[0] = SA[i];
+    tr_fixdown(ISAd, SA, 0, i);
+    SA[i] = t;
+  }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Returns the median of three elements. */
+static INLINE
+int *
+tr_median3(const int *ISAd, int *v1, int *v2, int *v3) {
+  int *t;
+  if(ISAd[*v1] > ISAd[*v2]) { SWAP(v1, v2); }
+  if(ISAd[*v2] > ISAd[*v3]) {
+    if(ISAd[*v1] > ISAd[*v3]) { return v1; }
+    else { return v3; }
+  }
+  return v2;
+}
+
+/* Returns the median of five elements. */
+static INLINE
+int *
+tr_median5(const int *ISAd,
+           int *v1, int *v2, int *v3, int *v4, int *v5) {
+  int *t;
+  if(ISAd[*v2] > ISAd[*v3]) { SWAP(v2, v3); }
+  if(ISAd[*v4] > ISAd[*v5]) { SWAP(v4, v5); }
+  if(ISAd[*v2] > ISAd[*v4]) { SWAP(v2, v4); SWAP(v3, v5); }
+  if(ISAd[*v1] > ISAd[*v3]) { SWAP(v1, v3); }
+  if(ISAd[*v1] > ISAd[*v4]) { SWAP(v1, v4); SWAP(v3, v5); }
+  if(ISAd[*v3] > ISAd[*v4]) { return v4; }
+  return v3;
+}
+
+/* Returns the pivot element. */
+static INLINE
+int *
+tr_pivot(const int *ISAd, int *first, int *last) {
+  int *middle;
+  int t;
+
+  t = last - first;
+  middle = first + t / 2;
+
+  if(t <= 512) {
+    if(t <= 32) {
+      return tr_median3(ISAd, first, middle, last - 1);
+    } else {
+      t >>= 2;
+      return tr_median5(ISAd, first, first + t, middle, last - 1 - t, last - 1);
+    }
+  }
+  t >>= 3;
+  first  = tr_median3(ISAd, first, first + t, first + (t << 1));
+  middle = tr_median3(ISAd, middle - t, middle, middle + t);
+  last   = tr_median3(ISAd, last - 1 - (t << 1), last - 1 - t, last - 1);
+  return tr_median3(ISAd, first, middle, last);
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+typedef struct _trbudget_t trbudget_t;
+struct _trbudget_t {
+  int chance;
+  int remain;
+  int incval;
+  int count;
+};
+
+static INLINE
+void
+trbudget_init(trbudget_t *budget, int chance, int incval) {
+  budget->chance = chance;
+  budget->remain = budget->incval = incval;
+}
+
+static INLINE
+int
+trbudget_check(trbudget_t *budget, int size) {
+  if(size <= budget->remain) { budget->remain -= size; return 1; }
+  if(budget->chance == 0) { budget->count += size; return 0; }
+  budget->remain += budget->incval - size;
+  budget->chance -= 1;
+  return 1;
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+static INLINE
+void
+tr_partition(const int *ISAd,
+             int *first, int *middle, int *last,
+             int **pa, int **pb, int v) {
+  int *a, *b, *c, *d, *e, *f;
+  int t, s;
+  int x = 0;
+
+  for(b = middle - 1; (++b < last) && ((x = ISAd[*b]) == v);) { }
+  if(((a = b) < last) && (x < v)) {
+    for(; (++b < last) && ((x = ISAd[*b]) <= v);) {
+      if(x == v) { SWAP(*b, *a); ++a; }
+    }
+  }
+  for(c = last; (b < --c) && ((x = ISAd[*c]) == v);) { }
+  if((b < (d = c)) && (x > v)) {
+    for(; (b < --c) && ((x = ISAd[*c]) >= v);) {
+      if(x == v) { SWAP(*c, *d); --d; }
+    }
+  }
+  for(; b < c;) {
+    SWAP(*b, *c);
+    for(; (++b < c) && ((x = ISAd[*b]) <= v);) {
+      if(x == v) { SWAP(*b, *a); ++a; }
+    }
+    for(; (b < --c) && ((x = ISAd[*c]) >= v);) {
+      if(x == v) { SWAP(*c, *d); --d; }
+    }
+  }
+
+  if(a <= d) {
+    c = b - 1;
+    if((s = a - first) > (t = b - a)) { s = t; }
+    for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
+    if((s = d - c) > (t = last - d - 1)) { s = t; }
+    for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); }
+    first += (b - a), last -= (d - c);
+  }
+  *pa = first, *pb = last;
+}
+
+static
+void
+tr_copy(int *ISA, const int *SA,
+        int *first, int *a, int *b, int *last,
+        int depth) {
+  /* sort suffixes of middle partition
+     by using sorted order of suffixes of left and right partition. */
+  int *c, *d, *e;
+  int s, v;
+
+  v = b - SA - 1;
+  for(c = first, d = a - 1; c <= d; ++c) {
+    if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
+      *++d = s;
+      ISA[s] = d - SA;
+    }
+  }
+  for(c = last - 1, e = d + 1, d = b; e < d; --c) {
+    if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
+      *--d = s;
+      ISA[s] = d - SA;
+    }
+  }
+}
+
+static
+void
+tr_partialcopy(int *ISA, const int *SA,
+               int *first, int *a, int *b, int *last,
+               int depth) {
+  int *c, *d, *e;
+  int s, v;
+  int rank, lastrank, newrank = -1;
+
+  v = b - SA - 1;
+  lastrank = -1;
+  for(c = first, d = a - 1; c <= d; ++c) {
+    if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
+      *++d = s;
+      rank = ISA[s + depth];
+      if(lastrank != rank) { lastrank = rank; newrank = d - SA; }
+      ISA[s] = newrank;
+    }
+  }
+
+  lastrank = -1;
+  for(e = d; first <= e; --e) {
+    rank = ISA[*e];
+    if(lastrank != rank) { lastrank = rank; newrank = e - SA; }
+    if(newrank != rank) { ISA[*e] = newrank; }
+  }
+
+  lastrank = -1;
+  for(c = last - 1, e = d + 1, d = b; e < d; --c) {
+    if((0 <= (s = *c - depth)) && (ISA[s] == v)) {
+      *--d = s;
+      rank = ISA[s + depth];
+      if(lastrank != rank) { lastrank = rank; newrank = d - SA; }
+      ISA[s] = newrank;
+    }
+  }
+}
+
+static
+void
+tr_introsort(int *ISA, const int *ISAd,
+             int *SA, int *first, int *last,
+             trbudget_t *budget) {
+#define STACK_SIZE TR_STACKSIZE
+  struct { const int *a; int *b, *c; int d, e; }stack[STACK_SIZE];
+  int *a, *b, *c;
+  int t;
+  int v, x = 0;
+  int incr = ISAd - ISA;
+  int limit, next;
+  int ssize, trlink = -1;
+
+  for(ssize = 0, limit = tr_ilg(last - first);;) {
+
+    if(limit < 0) {
+      if(limit == -1) {
+        /* tandem repeat partition */
+        tr_partition(ISAd - incr, first, first, last, &a, &b, last - SA - 1);
+
+        /* update ranks */
+        if(a < last) {
+          for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; }
+        }
+        if(b < last) {
+          for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; }
+        }
+
+        /* push */
+        if(1 < (b - a)) {
+          STACK_PUSH5(NULL, a, b, 0, 0);
+          STACK_PUSH5(ISAd - incr, first, last, -2, trlink);
+          trlink = ssize - 2;
+        }
+        if((a - first) <= (last - b)) {
+          if(1 < (a - first)) {
+            STACK_PUSH5(ISAd, b, last, tr_ilg(last - b), trlink);
+            last = a, limit = tr_ilg(a - first);
+          } else if(1 < (last - b)) {
+            first = b, limit = tr_ilg(last - b);
+          } else {
+            STACK_POP5(ISAd, first, last, limit, trlink);
+          }
+        } else {
+          if(1 < (last - b)) {
+            STACK_PUSH5(ISAd, first, a, tr_ilg(a - first), trlink);
+            first = b, limit = tr_ilg(last - b);
+          } else if(1 < (a - first)) {
+            last = a, limit = tr_ilg(a - first);
+          } else {
+            STACK_POP5(ISAd, first, last, limit, trlink);
+          }
+        }
+      } else if(limit == -2) {
+        /* tandem repeat copy */
+        a = stack[--ssize].b, b = stack[ssize].c;
+        if(stack[ssize].d == 0) {
+          tr_copy(ISA, SA, first, a, b, last, ISAd - ISA);
+        } else {
+          if(0 <= trlink) { stack[trlink].d = -1; }
+          tr_partialcopy(ISA, SA, first, a, b, last, ISAd - ISA);
+        }
+        STACK_POP5(ISAd, first, last, limit, trlink);
+      } else {
+        /* sorted partition */
+        if(0 <= *first) {
+          a = first;
+          do { ISA[*a] = a - SA; } while((++a < last) && (0 <= *a));
+          first = a;
+        }
+        if(first < last) {
+          a = first; do { *a = ~*a; } while(*++a < 0);
+          next = (ISA[*a] != ISAd[*a]) ? tr_ilg(a - first + 1) : -1;
+          if(++a < last) { for(b = first, v = a - SA - 1; b < a; ++b) { ISA[*b] = v; } }
+
+          /* push */
+          if(trbudget_check(budget, a - first)) {
+            if((a - first) <= (last - a)) {
+              STACK_PUSH5(ISAd, a, last, -3, trlink);
+              ISAd += incr, last = a, limit = next;
+            } else {
+              if(1 < (last - a)) {
+                STACK_PUSH5(ISAd + incr, first, a, next, trlink);
+                first = a, limit = -3;
+              } else {
+                ISAd += incr, last = a, limit = next;
+              }
+            }
+          } else {
+            if(0 <= trlink) { stack[trlink].d = -1; }
+            if(1 < (last - a)) {
+              first = a, limit = -3;
+            } else {
+              STACK_POP5(ISAd, first, last, limit, trlink);
+            }
+          }
+        } else {
+          STACK_POP5(ISAd, first, last, limit, trlink);
+        }
+      }
+      continue;
+    }
+
+    if((last - first) <= TR_INSERTIONSORT_THRESHOLD) {
+      tr_insertionsort(ISAd, first, last);
+      limit = -3;
+      continue;
+    }
+
+    if(limit-- == 0) {
+      tr_heapsort(ISAd, first, last - first);
+      for(a = last - 1; first < a; a = b) {
+        for(x = ISAd[*a], b = a - 1; (first <= b) && (ISAd[*b] == x); --b) { *b = ~*b; }
+      }
+      limit = -3;
+      continue;
+    }
+
+    /* choose pivot */
+    a = tr_pivot(ISAd, first, last);
+    SWAP(*first, *a);
+    v = ISAd[*first];
+
+    /* partition */
+    tr_partition(ISAd, first, first + 1, last, &a, &b, v);
+    if((last - first) != (b - a)) {
+      next = (ISA[*a] != v) ? tr_ilg(b - a) : -1;
+
+      /* update ranks */
+      for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; }
+      if(b < last) { for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; } }
+
+      /* push */
+      if((1 < (b - a)) && (trbudget_check(budget, b - a))) {
+        if((a - first) <= (last - b)) {
+          if((last - b) <= (b - a)) {
+            if(1 < (a - first)) {
+              STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+              STACK_PUSH5(ISAd, b, last, limit, trlink);
+              last = a;
+            } else if(1 < (last - b)) {
+              STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+              first = b;
+            } else {
+              ISAd += incr, first = a, last = b, limit = next;
+            }
+          } else if((a - first) <= (b - a)) {
+            if(1 < (a - first)) {
+              STACK_PUSH5(ISAd, b, last, limit, trlink);
+              STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+              last = a;
+            } else {
+              STACK_PUSH5(ISAd, b, last, limit, trlink);
+              ISAd += incr, first = a, last = b, limit = next;
+            }
+          } else {
+            STACK_PUSH5(ISAd, b, last, limit, trlink);
+            STACK_PUSH5(ISAd, first, a, limit, trlink);
+            ISAd += incr, first = a, last = b, limit = next;
+          }
+        } else {
+          if((a - first) <= (b - a)) {
+            if(1 < (last - b)) {
+              STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+              STACK_PUSH5(ISAd, first, a, limit, trlink);
+              first = b;
+            } else if(1 < (a - first)) {
+              STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+              last = a;
+            } else {
+              ISAd += incr, first = a, last = b, limit = next;
+            }
+          } else if((last - b) <= (b - a)) {
+            if(1 < (last - b)) {
+              STACK_PUSH5(ISAd, first, a, limit, trlink);
+              STACK_PUSH5(ISAd + incr, a, b, next, trlink);
+              first = b;
+            } else {
+              STACK_PUSH5(ISAd, first, a, limit, trlink);
+              ISAd += incr, first = a, last = b, limit = next;
+            }
+          } else {
+            STACK_PUSH5(ISAd, first, a, limit, trlink);
+            STACK_PUSH5(ISAd, b, last, limit, trlink);
+            ISAd += incr, first = a, last = b, limit = next;
+          }
+        }
+      } else {
+        if((1 < (b - a)) && (0 <= trlink)) { stack[trlink].d = -1; }
+        if((a - first) <= (last - b)) {
+          if(1 < (a - first)) {
+            STACK_PUSH5(ISAd, b, last, limit, trlink);
+            last = a;
+          } else if(1 < (last - b)) {
+            first = b;
+          } else {
+            STACK_POP5(ISAd, first, last, limit, trlink);
+          }
+        } else {
+          if(1 < (last - b)) {
+            STACK_PUSH5(ISAd, first, a, limit, trlink);
+            first = b;
+          } else if(1 < (a - first)) {
+            last = a;
+          } else {
+            STACK_POP5(ISAd, first, last, limit, trlink);
+          }
+        }
+      }
+    } else {
+      if(trbudget_check(budget, last - first)) {
+        limit = tr_ilg(last - first), ISAd += incr;
+      } else {
+        if(0 <= trlink) { stack[trlink].d = -1; }
+        STACK_POP5(ISAd, first, last, limit, trlink);
+      }
+    }
+  }
+#undef STACK_SIZE
+}
+
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Tandem repeat sort */
+static
+void
+trsort(int *ISA, int *SA, int n, int depth) {
+  int *ISAd;
+  int *first, *last;
+  trbudget_t budget;
+  int t, skip, unsorted;
+
+  trbudget_init(&budget, tr_ilg(n) * 2 / 3, n);
+/*  trbudget_init(&budget, tr_ilg(n) * 3 / 4, n); */
+  for(ISAd = ISA + depth; -n < *SA; ISAd += ISAd - ISA) {
+    first = SA;
+    skip = 0;
+    unsorted = 0;
+    do {
+      if((t = *first) < 0) { first -= t; skip += t; }
+      else {
+        if(skip != 0) { *(first + skip) = skip; skip = 0; }
+        last = SA + ISA[t] + 1;
+        if(1 < (last - first)) {
+          budget.count = 0;
+          tr_introsort(ISA, ISAd, SA, first, last, &budget);
+          if(budget.count != 0) { unsorted += budget.count; }
+          else { skip = first - last; }
+        } else if((last - first) == 1) {
+          skip = -1;
+        }
+        first = last;
+      }
+    } while(first < (SA + n));
+    if(skip != 0) { *(first + skip) = skip; }
+    if(unsorted == 0) { break; }
+  }
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/* Sorts suffixes of type B*. */
+static
+int
+sort_typeBstar(const unsigned char *T, int *SA,
+               int *bucket_A, int *bucket_B,
+               int n, int openMP) {
+  int *PAb, *ISAb, *buf;
+#ifdef LIBBSC_OPENMP
+  int *curbuf;
+  int l;
+#endif
+  int i, j, k, t, m, bufsize;
+  int c0, c1;
+#ifdef LIBBSC_OPENMP
+  int d0, d1;
+#endif
+  (void)openMP;
+
+  /* Initialize bucket arrays. */
+  for(i = 0; i < BUCKET_A_SIZE; ++i) { bucket_A[i] = 0; }
+  for(i = 0; i < BUCKET_B_SIZE; ++i) { bucket_B[i] = 0; }
+
+  /* Count the number of occurrences of the first one or two characters of each
+     type A, B and B* suffix. Moreover, store the beginning position of all
+     type B* suffixes into the array SA. */
+  for(i = n - 1, m = n, c0 = T[n - 1]; 0 <= i;) {
+    /* type A suffix. */
+    do { ++BUCKET_A(c1 = c0); } while((0 <= --i) && ((c0 = T[i]) >= c1));
+    if(0 <= i) {
+      /* type B* suffix. */
+      ++BUCKET_BSTAR(c0, c1);
+      SA[--m] = i;
+      /* type B suffix. */
+      for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) {
+        ++BUCKET_B(c0, c1);
+      }
+    }
+  }
+  m = n - m;
+/*
+note:
+  A type B* suffix is lexicographically smaller than a type B suffix that
+  begins with the same first two characters.
+*/
+
+  /* Calculate the index of start/end point of each bucket. */
+  for(c0 = 0, i = 0, j = 0; c0 < ALPHABET_SIZE; ++c0) {
+    t = i + BUCKET_A(c0);
+    BUCKET_A(c0) = i + j; /* start point */
+    i = t + BUCKET_B(c0, c0);
+    for(c1 = c0 + 1; c1 < ALPHABET_SIZE; ++c1) {
+      j += BUCKET_BSTAR(c0, c1);
+      BUCKET_BSTAR(c0, c1) = j; /* end point */
+      i += BUCKET_B(c0, c1);
+    }
+  }
+
+  if(0 < m) {
+    /* Sort the type B* suffixes by their first two characters. */
+    PAb = SA + n - m; ISAb = SA + m;
+    for(i = m - 2; 0 <= i; --i) {
+      t = PAb[i], c0 = T[t], c1 = T[t + 1];
+      SA[--BUCKET_BSTAR(c0, c1)] = i;
+    }
+    t = PAb[m - 1], c0 = T[t], c1 = T[t + 1];
+    SA[--BUCKET_BSTAR(c0, c1)] = m - 1;
+
+    /* Sort the type B* substrings using sssort. */
+#ifdef LIBBSC_OPENMP
+    if (openMP)
+    {
+        buf = SA + m;
+        c0 = ALPHABET_SIZE - 2, c1 = ALPHABET_SIZE - 1, j = m;
+#pragma omp parallel default(shared) private(bufsize, curbuf, k, l, d0, d1)
+        {
+          bufsize = (n - (2 * m)) / omp_get_num_threads();
+          curbuf = buf + omp_get_thread_num() * bufsize;
+          k = 0;
+          for(;;) {
+            #pragma omp critical(sssort_lock)
+            {
+              if(0 < (l = j)) {
+                d0 = c0, d1 = c1;
+                do {
+                  k = BUCKET_BSTAR(d0, d1);
+                  if(--d1 <= d0) {
+                    d1 = ALPHABET_SIZE - 1;
+                    if(--d0 < 0) { break; }
+                  }
+                } while(((l - k) <= 1) && (0 < (l = k)));
+                c0 = d0, c1 = d1, j = k;
+              }
+            }
+            if(l == 0) { break; }
+            sssort(T, PAb, SA + k, SA + l,
+                   curbuf, bufsize, 2, n, *(SA + k) == (m - 1));
+          }
+        }
+    }
+    else
+    {
+        buf = SA + m, bufsize = n - (2 * m);
+        for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) {
+          for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) {
+            i = BUCKET_BSTAR(c0, c1);
+            if(1 < (j - i)) {
+              sssort(T, PAb, SA + i, SA + j,
+                     buf, bufsize, 2, n, *(SA + i) == (m - 1));
+            }
+          }
+        }
+    }
+#else
+    buf = SA + m, bufsize = n - (2 * m);
+    for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) {
+      for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) {
+        i = BUCKET_BSTAR(c0, c1);
+        if(1 < (j - i)) {
+          sssort(T, PAb, SA + i, SA + j,
+                 buf, bufsize, 2, n, *(SA + i) == (m - 1));
+        }
+      }
+    }
+#endif
+
+    /* Compute ranks of type B* substrings. */
+    for(i = m - 1; 0 <= i; --i) {
+      if(0 <= SA[i]) {
+        j = i;
+        do { ISAb[SA[i]] = i; } while((0 <= --i) && (0 <= SA[i]));
+        SA[i + 1] = i - j;
+        if(i <= 0) { break; }
+      }
+      j = i;
+      do { ISAb[SA[i] = ~SA[i]] = j; } while(SA[--i] < 0);
+      ISAb[SA[i]] = j;
+    }
+
+    /* Construct the inverse suffix array of type B* suffixes using trsort. */
+    trsort(ISAb, SA, m, 1);
+
+    /* Set the sorted order of tyoe B* suffixes. */
+    for(i = n - 1, j = m, c0 = T[n - 1]; 0 <= i;) {
+      for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) >= c1); --i, c1 = c0) { }
+      if(0 <= i) {
+        t = i;
+        for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) { }
+        SA[ISAb[--j]] = ((t == 0) || (1 < (t - i))) ? t : ~t;
+      }
+    }
+
+    /* Calculate the index of start/end point of each bucket. */
+    BUCKET_B(ALPHABET_SIZE - 1, ALPHABET_SIZE - 1) = n; /* end point */
+    for(c0 = ALPHABET_SIZE - 2, k = m - 1; 0 <= c0; --c0) {
+      i = BUCKET_A(c0 + 1) - 1;
+      for(c1 = ALPHABET_SIZE - 1; c0 < c1; --c1) {
+        t = i - BUCKET_B(c0, c1);
+        BUCKET_B(c0, c1) = i; /* end point */
+
+        /* Move all type B* suffixes to the correct position. */
+        for(i = t, j = BUCKET_BSTAR(c0, c1);
+            j <= k;
+            --i, --k) { SA[i] = SA[k]; }
+      }
+      BUCKET_BSTAR(c0, c0 + 1) = i - BUCKET_B(c0, c0) + 1; /* start point */
+      BUCKET_B(c0, c0) = i; /* end point */
+    }
+  }
+
+  return m;
+}
+
+/* Constructs the suffix array by using the sorted order of type B* suffixes. */
+static
+void
+construct_SA(const unsigned char *T, int *SA,
+             int *bucket_A, int *bucket_B,
+             int n, int m) {
+  int *i, *j, *k;
+  int s;
+  int c0, c1, c2;
+
+  if(0 < m) {
+    /* Construct the sorted order of type B suffixes by using
+       the sorted order of type B* suffixes. */
+    for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
+      /* Scan the suffix array from right to left. */
+      for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
+          j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
+          i <= j;
+          --j) {
+        if(0 < (s = *j)) {
+          assert(T[s] == c1);
+          assert(((s + 1) < n) && (T[s] <= T[s + 1]));
+          assert(T[s - 1] <= T[s]);
+          *j = ~s;
+          c0 = T[--s];
+          if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
+          if(c0 != c2) {
+            if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
+            k = SA + BUCKET_B(c2 = c0, c1);
+          }
+          assert(k < j);
+          *k-- = s;
+        } else {
+          assert(((s == 0) && (T[s] == c1)) || (s < 0));
+          *j = ~s;
+        }
+      }
+    }
+  }
+
+  /* Construct the suffix array by using
+     the sorted order of type B suffixes. */
+  k = SA + BUCKET_A(c2 = T[n - 1]);
+  *k++ = (T[n - 2] < c2) ? ~(n - 1) : (n - 1);
+  /* Scan the suffix array from left to right. */
+  for(i = SA, j = SA + n; i < j; ++i) {
+    if(0 < (s = *i)) {
+      assert(T[s - 1] >= T[s]);
+      c0 = T[--s];
+      if((s == 0) || (T[s - 1] < c0)) { s = ~s; }
+      if(c0 != c2) {
+        BUCKET_A(c2) = k - SA;
+        k = SA + BUCKET_A(c2 = c0);
+      }
+      assert(i < k);
+      *k++ = s;
+    } else {
+      assert(s < 0);
+      *i = ~s;
+    }
+  }
+}
+
+/* Constructs the burrows-wheeler transformed string directly
+   by using the sorted order of type B* suffixes. */
+static
+int
+construct_BWT(const unsigned char *T, int *SA,
+              int *bucket_A, int *bucket_B,
+              int n, int m) {
+  int *i, *j, *k, *orig;
+  int s;
+  int c0, c1, c2;
+
+  if(0 < m) {
+    /* Construct the sorted order of type B suffixes by using
+       the sorted order of type B* suffixes. */
+    for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
+      /* Scan the suffix array from right to left. */
+      for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
+          j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
+          i <= j;
+          --j) {
+        if(0 < (s = *j)) {
+          assert(T[s] == c1);
+          assert(((s + 1) < n) && (T[s] <= T[s + 1]));
+          assert(T[s - 1] <= T[s]);
+          c0 = T[--s];
+          *j = ~((int)c0);
+          if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
+          if(c0 != c2) {
+            if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
+            k = SA + BUCKET_B(c2 = c0, c1);
+          }
+          assert(k < j);
+          *k-- = s;
+        } else if(s != 0) {
+          *j = ~s;
+#ifndef NDEBUG
+        } else {
+          assert(T[s] == c1);
+#endif
+        }
+      }
+    }
+  }
+
+  /* Construct the BWTed string by using
+     the sorted order of type B suffixes. */
+  k = SA + BUCKET_A(c2 = T[n - 1]);
+  *k++ = (T[n - 2] < c2) ? ~((int)T[n - 2]) : (n - 1);
+  /* Scan the suffix array from left to right. */
+  for(i = SA, j = SA + n, orig = SA; i < j; ++i) {
+    if(0 < (s = *i)) {
+      assert(T[s - 1] >= T[s]);
+      c0 = T[--s];
+      *i = c0;
+      if((0 < s) && (T[s - 1] < c0)) { s = ~((int)T[s - 1]); }
+      if(c0 != c2) {
+        BUCKET_A(c2) = k - SA;
+        k = SA + BUCKET_A(c2 = c0);
+      }
+      assert(i < k);
+      *k++ = s;
+    } else if(s != 0) {
+      *i = ~s;
+    } else {
+      orig = i;
+    }
+  }
+
+  return orig - SA;
+}
+
+/* Constructs the burrows-wheeler transformed string directly
+   by using the sorted order of type B* suffixes. */
+static
+int
+construct_BWT_indexes(const unsigned char *T, int *SA,
+                      int *bucket_A, int *bucket_B,
+                      int n, int m,
+                      unsigned char * num_indexes, int * indexes) {
+  int *i, *j, *k, *orig;
+  int s;
+  int c0, c1, c2;
+
+  int mod = n / 8;
+  {
+      mod |= mod >> 1;  mod |= mod >> 2;
+      mod |= mod >> 4;  mod |= mod >> 8;
+      mod |= mod >> 16; mod >>= 1;
+
+      *num_indexes = (unsigned char)((n - 1) / (mod + 1));
+  }
+
+  if(0 < m) {
+    /* Construct the sorted order of type B suffixes by using
+       the sorted order of type B* suffixes. */
+    for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
+      /* Scan the suffix array from right to left. */
+      for(i = SA + BUCKET_BSTAR(c1, c1 + 1),
+          j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1;
+          i <= j;
+          --j) {
+        if(0 < (s = *j)) {
+          assert(T[s] == c1);
+          assert(((s + 1) < n) && (T[s] <= T[s + 1]));
+          assert(T[s - 1] <= T[s]);
+
+          if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = j - SA;
+
+          c0 = T[--s];
+          *j = ~((int)c0);
+          if((0 < s) && (T[s - 1] > c0)) { s = ~s; }
+          if(c0 != c2) {
+            if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; }
+            k = SA + BUCKET_B(c2 = c0, c1);
+          }
+          assert(k < j);
+          *k-- = s;
+        } else if(s != 0) {
+          *j = ~s;
+#ifndef NDEBUG
+        } else {
+          assert(T[s] == c1);
+#endif
+        }
+      }
+    }
+  }
+
+  /* Construct the BWTed string by using
+     the sorted order of type B suffixes. */
+  k = SA + BUCKET_A(c2 = T[n - 1]);
+  if (T[n - 2] < c2) {
+    if (((n - 1) & mod) == 0) indexes[(n - 1) / (mod + 1) - 1] = k - SA;
+    *k++ = ~((int)T[n - 2]);
+  }
+  else {
+    *k++ = n - 1;
+  }
+
+  /* Scan the suffix array from left to right. */
+  for(i = SA, j = SA + n, orig = SA; i < j; ++i) {
+    if(0 < (s = *i)) {
+      assert(T[s - 1] >= T[s]);
+
+      if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = i - SA;
+
+      c0 = T[--s];
+      *i = c0;
+      if(c0 != c2) {
+        BUCKET_A(c2) = k - SA;
+        k = SA + BUCKET_A(c2 = c0);
+      }
+      assert(i < k);
+      if((0 < s) && (T[s - 1] < c0)) {
+          if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = k - SA;
+          *k++ = ~((int)T[s - 1]);
+      } else
+        *k++ = s;
+    } else if(s != 0) {
+      *i = ~s;
+    } else {
+      orig = i;
+    }
+  }
+
+  return orig - SA;
+}
+
+
+/*---------------------------------------------------------------------------*/
+
+/*- Function -*/
+
+int
+divsufsort(const unsigned char *T, int *SA, int n, int openMP) {
+  int *bucket_A, *bucket_B;
+  int m;
+  int err = 0;
+
+  /* Check arguments. */
+  if((T == NULL) || (SA == NULL) || (n < 0)) { return -1; }
+  else if(n == 0) { return 0; }
+  else if(n == 1) { SA[0] = 0; return 0; }
+  else if(n == 2) { m = (T[0] < T[1]); SA[m ^ 1] = 0, SA[m] = 1; return 0; }
+
+  bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int));
+  bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int));
+
+  /* Suffixsort. */
+  if((bucket_A != NULL) && (bucket_B != NULL)) {
+    m = sort_typeBstar(T, SA, bucket_A, bucket_B, n, openMP);
+    construct_SA(T, SA, bucket_A, bucket_B, n, m);
+  } else {
+    err = -2;
+  }
+
+  free(bucket_B);
+  free(bucket_A);
+
+  return err;
+}
+
+int
+divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP) {
+  int *B;
+  int *bucket_A, *bucket_B;
+  int m, pidx, i;
+
+  /* Check arguments. */
+  if((T == NULL) || (U == NULL) || (n < 0)) { return -1; }
+  else if(n <= 1) { if(n == 1) { U[0] = T[0]; } return n; }
+
+  if((B = A) == NULL) { B = (int *)malloc((size_t)(n + 1) * sizeof(int)); }
+  bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int));
+  bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int));
+
+  /* Burrows-Wheeler Transform. */
+  if((B != NULL) && (bucket_A != NULL) && (bucket_B != NULL)) {
+    m = sort_typeBstar(T, B, bucket_A, bucket_B, n, openMP);
+
+    if (num_indexes == NULL || indexes == NULL) {
+        pidx = construct_BWT(T, B, bucket_A, bucket_B, n, m);
+    } else {
+        pidx = construct_BWT_indexes(T, B, bucket_A, bucket_B, n, m, num_indexes, indexes);
+    }
+
+    /* Copy to output string. */
+    U[0] = T[n - 1];
+    for(i = 0; i < pidx; ++i) { U[i + 1] = (unsigned char)B[i]; }
+    for(i += 1; i < n; ++i) { U[i] = (unsigned char)B[i]; }
+    pidx += 1;
+  } else {
+    pidx = -2;
+  }
+
+  free(bucket_B);
+  free(bucket_A);
+  if(A == NULL) { free(B); }
+
+  return pidx;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/dictBuilder/divsufsort.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,67 @@
+/*
+ * divsufsort.h for libdivsufsort-lite
+ * Copyright (c) 2003-2008 Yuta Mori All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person
+ * obtaining a copy of this software and associated documentation
+ * files (the "Software"), to deal in the Software without
+ * restriction, including without limitation the rights to use,
+ * copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following
+ * conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+ * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+#ifndef _DIVSUFSORT_H
+#define _DIVSUFSORT_H 1
+
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+
+
+/*- Prototypes -*/
+
+/**
+ * Constructs the suffix array of a given string.
+ * @param T [0..n-1] The input string.
+ * @param SA [0..n-1] The output array of suffixes.
+ * @param n The length of the given string.
+ * @param openMP enables OpenMP optimization.
+ * @return 0 if no error occurred, -1 or -2 otherwise.
+ */
+int
+divsufsort(const unsigned char *T, int *SA, int n, int openMP);
+
+/**
+ * Constructs the burrows-wheeler transformed string of a given string.
+ * @param T [0..n-1] The input string.
+ * @param U [0..n-1] The output string. (can be T)
+ * @param A [0..n-1] The temporary array. (can be NULL)
+ * @param n The length of the given string.
+ * @param num_indexes The length of secondary indexes array. (can be NULL)
+ * @param indexes The secondary indexes array. (can be NULL)
+ * @param openMP enables OpenMP optimization.
+ * @return The primary index if no error occurred, -1 or -2 otherwise.
+ */
+int
+divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP);
+
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif /* __cplusplus */
+
+#endif /* _DIVSUFSORT_H */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/dictBuilder/zdict.c	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,1010 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+
+/*-**************************************
+*  Tuning parameters
+****************************************/
+#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
+#define ZDICT_MIN_SAMPLES_SIZE 512
+
+
+/*-**************************************
+*  Compiler Options
+****************************************/
+/* Unix Large Files support (>4GB) */
+#define _FILE_OFFSET_BITS 64
+#if (defined(__sun__) && (!defined(__LP64__)))   /* Sun Solaris 32-bits requires specific definitions */
+#  define _LARGEFILE_SOURCE
+#elif ! defined(__LP64__)                        /* No point defining Large file for 64 bit */
+#  define _LARGEFILE64_SOURCE
+#endif
+
+
+/*-*************************************
+*  Dependencies
+***************************************/
+#include <stdlib.h>        /* malloc, free */
+#include <string.h>        /* memset */
+#include <stdio.h>         /* fprintf, fopen, ftello64 */
+#include <time.h>          /* clock */
+
+#include "mem.h"           /* read */
+#include "error_private.h"
+#include "fse.h"           /* FSE_normalizeCount, FSE_writeNCount */
+#define HUF_STATIC_LINKING_ONLY
+#include "huf.h"
+#include "zstd_internal.h" /* includes zstd.h */
+#include "xxhash.h"
+#include "divsufsort.h"
+#ifndef ZDICT_STATIC_LINKING_ONLY
+#  define ZDICT_STATIC_LINKING_ONLY
+#endif
+#include "zdict.h"
+
+
+/*-*************************************
+*  Constants
+***************************************/
+#define KB *(1 <<10)
+#define MB *(1 <<20)
+#define GB *(1U<<30)
+
+#define DICTLISTSIZE_DEFAULT 10000
+
+#define NOISELENGTH 32
+
+#define MINRATIO 4
+static const int g_compressionLevel_default = 5;
+static const U32 g_selectivity_default = 9;
+static const size_t g_provision_entropySize = 200;
+static const size_t g_min_fast_dictContent = 192;
+
+
+/*-*************************************
+*  Console display
+***************************************/
+#define DISPLAY(...)         { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
+#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); }    /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
+
+static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
+
+static void ZDICT_printHex(const void* ptr, size_t length)
+{
+    const BYTE* const b = (const BYTE*)ptr;
+    size_t u;
+    for (u=0; u<length; u++) {
+        BYTE c = b[u];
+        if (c<32 || c>126) c = '.';   /* non-printable char */
+        DISPLAY("%c", c);
+    }
+}
+
+
+/*-********************************************************
+*  Helper functions
+**********************************************************/
+unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
+
+const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
+
+unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
+{
+    if (dictSize < 8) return 0;
+    if (MEM_readLE32(dictBuffer) != ZSTD_DICT_MAGIC) return 0;
+    return MEM_readLE32((const char*)dictBuffer + 4);
+}
+
+
+/*-********************************************************
+*  Dictionary training functions
+**********************************************************/
+static unsigned ZDICT_NbCommonBytes (register size_t val)
+{
+    if (MEM_isLittleEndian()) {
+        if (MEM_64bits()) {
+#       if defined(_MSC_VER) && defined(_WIN64)
+            unsigned long r = 0;
+            _BitScanForward64( &r, (U64)val );
+            return (unsigned)(r>>3);
+#       elif defined(__GNUC__) && (__GNUC__ >= 3)
+            return (__builtin_ctzll((U64)val) >> 3);
+#       else
+            static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
+            return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
+#       endif
+        } else { /* 32 bits */
+#       if defined(_MSC_VER)
+            unsigned long r=0;
+            _BitScanForward( &r, (U32)val );
+            return (unsigned)(r>>3);
+#       elif defined(__GNUC__) && (__GNUC__ >= 3)
+            return (__builtin_ctz((U32)val) >> 3);
+#       else
+            static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
+            return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
+#       endif
+        }
+    } else {  /* Big Endian CPU */
+        if (MEM_64bits()) {
+#       if defined(_MSC_VER) && defined(_WIN64)
+            unsigned long r = 0;
+            _BitScanReverse64( &r, val );
+            return (unsigned)(r>>3);
+#       elif defined(__GNUC__) && (__GNUC__ >= 3)
+            return (__builtin_clzll(val) >> 3);
+#       else
+            unsigned r;
+            const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
+            if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
+            if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
+            r += (!val);
+            return r;
+#       endif
+        } else { /* 32 bits */
+#       if defined(_MSC_VER)
+            unsigned long r = 0;
+            _BitScanReverse( &r, (unsigned long)val );
+            return (unsigned)(r>>3);
+#       elif defined(__GNUC__) && (__GNUC__ >= 3)
+            return (__builtin_clz((U32)val) >> 3);
+#       else
+            unsigned r;
+            if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
+            r += (!val);
+            return r;
+#       endif
+    }   }
+}
+
+
+/*! ZDICT_count() :
+    Count the nb of common bytes between 2 pointers.
+    Note : this function presumes end of buffer followed by noisy guard band.
+*/
+static size_t ZDICT_count(const void* pIn, const void* pMatch)
+{
+    const char* const pStart = (const char*)pIn;
+    for (;;) {
+        size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
+        if (!diff) {
+            pIn = (const char*)pIn+sizeof(size_t);
+            pMatch = (const char*)pMatch+sizeof(size_t);
+            continue;
+        }
+        pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
+        return (size_t)((const char*)pIn - pStart);
+    }
+}
+
+
+typedef struct {
+    U32 pos;
+    U32 length;
+    U32 savings;
+} dictItem;
+
+static void ZDICT_initDictItem(dictItem* d)
+{
+    d->pos = 1;
+    d->length = 0;
+    d->savings = (U32)(-1);
+}
+
+
+#define LLIMIT 64          /* heuristic determined experimentally */
+#define MINMATCHLENGTH 7   /* heuristic determined experimentally */
+static dictItem ZDICT_analyzePos(
+                       BYTE* doneMarks,
+                       const int* suffix, U32 start,
+                       const void* buffer, U32 minRatio, U32 notificationLevel)
+{
+    U32 lengthList[LLIMIT] = {0};
+    U32 cumulLength[LLIMIT] = {0};
+    U32 savings[LLIMIT] = {0};
+    const BYTE* b = (const BYTE*)buffer;
+    size_t length;
+    size_t maxLength = LLIMIT;
+    size_t pos = suffix[start];
+    U32 end = start;
+    dictItem solution;
+
+    /* init */
+    memset(&solution, 0, sizeof(solution));
+    doneMarks[pos] = 1;
+
+    /* trivial repetition cases */
+    if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
+       ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
+       ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
+        /* skip and mark segment */
+        U16 u16 = MEM_read16(b+pos+4);
+        U32 u, e = 6;
+        while (MEM_read16(b+pos+e) == u16) e+=2 ;
+        if (b[pos+e] == b[pos+e-1]) e++;
+        for (u=1; u<e; u++)
+            doneMarks[pos+u] = 1;
+        return solution;
+    }
+
+    /* look forward */
+    do {
+        end++;
+        length = ZDICT_count(b + pos, b + suffix[end]);
+    } while (length >=MINMATCHLENGTH);
+
+    /* look backward */
+    do {
+        length = ZDICT_count(b + pos, b + *(suffix+start-1));
+        if (length >=MINMATCHLENGTH) start--;
+    } while(length >= MINMATCHLENGTH);
+
+    /* exit if not found a minimum nb of repetitions */
+    if (end-start < minRatio) {
+        U32 idx;
+        for(idx=start; idx<end; idx++)
+            doneMarks[suffix[idx]] = 1;
+        return solution;
+    }
+
+    {   int i;
+        U32 searchLength;
+        U32 refinedStart = start;
+        U32 refinedEnd = end;
+
+        DISPLAYLEVEL(4, "\n");
+        DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u  ", (U32)(end-start), MINMATCHLENGTH, (U32)pos);
+        DISPLAYLEVEL(4, "\n");
+
+        for (searchLength = MINMATCHLENGTH ; ; searchLength++) {
+            BYTE currentChar = 0;
+            U32 currentCount = 0;
+            U32 currentID = refinedStart;
+            U32 id;
+            U32 selectedCount = 0;
+            U32 selectedID = currentID;
+            for (id =refinedStart; id < refinedEnd; id++) {
+                if (b[ suffix[id] + searchLength] != currentChar) {
+                    if (currentCount > selectedCount) {
+                        selectedCount = currentCount;
+                        selectedID = currentID;
+                    }
+                    currentID = id;
+                    currentChar = b[ suffix[id] + searchLength];
+                    currentCount = 0;
+                }
+                currentCount ++;
+            }
+            if (currentCount > selectedCount) {  /* for last */
+                selectedCount = currentCount;
+                selectedID = currentID;
+            }
+
+            if (selectedCount < minRatio)
+                break;
+            refinedStart = selectedID;
+            refinedEnd = refinedStart + selectedCount;
+        }
+
+        /* evaluate gain based on new ref */
+        start = refinedStart;
+        pos = suffix[refinedStart];
+        end = start;
+        memset(lengthList, 0, sizeof(lengthList));
+
+        /* look forward */
+        do {
+            end++;
+            length = ZDICT_count(b + pos, b + suffix[end]);
+            if (length >= LLIMIT) length = LLIMIT-1;
+            lengthList[length]++;
+        } while (length >=MINMATCHLENGTH);
+
+        /* look backward */
+		length = MINMATCHLENGTH;
+		while ((length >= MINMATCHLENGTH) & (start > 0)) {
+			length = ZDICT_count(b + pos, b + suffix[start - 1]);
+			if (length >= LLIMIT) length = LLIMIT - 1;
+			lengthList[length]++;
+			if (length >= MINMATCHLENGTH) start--;
+		}
+
+        /* largest useful length */
+        memset(cumulLength, 0, sizeof(cumulLength));
+        cumulLength[maxLength-1] = lengthList[maxLength-1];
+        for (i=(int)(maxLength-2); i>=0; i--)
+            cumulLength[i] = cumulLength[i+1] + lengthList[i];
+
+        for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
+        maxLength = i;
+
+        /* reduce maxLength in case of final into repetitive data */
+        {   U32 l = (U32)maxLength;
+            BYTE const c = b[pos + maxLength-1];
+            while (b[pos+l-2]==c) l--;
+            maxLength = l;
+        }
+        if (maxLength < MINMATCHLENGTH) return solution;   /* skip : no long-enough solution */
+
+        /* calculate savings */
+        savings[5] = 0;
+        for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
+            savings[i] = savings[i-1] + (lengthList[i] * (i-3));
+
+        DISPLAYLEVEL(4, "Selected ref at position %u, of length %u : saves %u (ratio: %.2f)  \n",
+                     (U32)pos, (U32)maxLength, savings[maxLength], (double)savings[maxLength] / maxLength);
+
+        solution.pos = (U32)pos;
+        solution.length = (U32)maxLength;
+        solution.savings = savings[maxLength];
+
+        /* mark positions done */
+        {   U32 id;
+            for (id=start; id<end; id++) {
+                U32 p, pEnd;
+                U32 const testedPos = suffix[id];
+                if (testedPos == pos)
+                    length = solution.length;
+                else {
+                    length = ZDICT_count(b+pos, b+testedPos);
+                    if (length > solution.length) length = solution.length;
+                }
+                pEnd = (U32)(testedPos + length);
+                for (p=testedPos; p<pEnd; p++)
+                    doneMarks[p] = 1;
+    }   }   }
+
+    return solution;
+}
+
+
+/*! ZDICT_checkMerge
+    check if dictItem can be merged, do it if possible
+    @return : id of destination elt, 0 if not merged
+*/
+static U32 ZDICT_checkMerge(dictItem* table, dictItem elt, U32 eltNbToSkip)
+{
+    const U32 tableSize = table->pos;
+    const U32 eltEnd = elt.pos + elt.length;
+
+    /* tail overlap */
+    U32 u; for (u=1; u<tableSize; u++) {
+        if (u==eltNbToSkip) continue;
+        if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) {  /* overlap, existing > new */
+            /* append */
+            U32 addedLength = table[u].pos - elt.pos;
+            table[u].length += addedLength;
+            table[u].pos = elt.pos;
+            table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
+            table[u].savings += elt.length / 8;    /* rough approx bonus */
+            elt = table[u];
+            /* sort : improve rank */
+            while ((u>1) && (table[u-1].savings < elt.savings))
+            table[u] = table[u-1], u--;
+            table[u] = elt;
+            return u;
+    }   }
+
+    /* front overlap */
+    for (u=1; u<tableSize; u++) {
+        if (u==eltNbToSkip) continue;
+        if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) {  /* overlap, existing < new */
+            /* append */
+            int addedLength = (int)eltEnd - (table[u].pos + table[u].length);
+            table[u].savings += elt.length / 8;    /* rough approx bonus */
+            if (addedLength > 0) {   /* otherwise, elt fully included into existing */
+                table[u].length += addedLength;
+                table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
+            }
+            /* sort : improve rank */
+            elt = table[u];
+            while ((u>1) && (table[u-1].savings < elt.savings))
+                table[u] = table[u-1], u--;
+            table[u] = elt;
+            return u;
+    }   }
+
+    return 0;
+}
+
+
+static void ZDICT_removeDictItem(dictItem* table, U32 id)
+{
+    /* convention : first element is nb of elts */
+    U32 const max = table->pos;
+    U32 u;
+    if (!id) return;   /* protection, should never happen */
+    for (u=id; u<max-1; u++)
+        table[u] = table[u+1];
+    table->pos--;
+}
+
+
+static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt)
+{
+    /* merge if possible */
+    U32 mergeId = ZDICT_checkMerge(table, elt, 0);
+    if (mergeId) {
+        U32 newMerge = 1;
+        while (newMerge) {
+            newMerge = ZDICT_checkMerge(table, table[mergeId], mergeId);
+            if (newMerge) ZDICT_removeDictItem(table, mergeId);
+            mergeId = newMerge;
+        }
+        return;
+    }
+
+    /* insert */
+    {   U32 current;
+        U32 nextElt = table->pos;
+        if (nextElt >= maxSize) nextElt = maxSize-1;
+        current = nextElt-1;
+        while (table[current].savings < elt.savings) {
+            table[current+1] = table[current];
+            current--;
+        }
+        table[current+1] = elt;
+        table->pos = nextElt+1;
+    }
+}
+
+
+static U32 ZDICT_dictSize(const dictItem* dictList)
+{
+    U32 u, dictSize = 0;
+    for (u=1; u<dictList[0].pos; u++)
+        dictSize += dictList[u].length;
+    return dictSize;
+}
+
+
+static size_t ZDICT_trainBuffer(dictItem* dictList, U32 dictListSize,
+                            const void* const buffer, size_t bufferSize,   /* buffer must end with noisy guard band */
+                            const size_t* fileSizes, unsigned nbFiles,
+                            U32 minRatio, U32 notificationLevel)
+{
+    int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
+    int* const suffix = suffix0+1;
+    U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
+    BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks));   /* +16 for overflow security */
+    U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
+    size_t result = 0;
+    clock_t displayClock = 0;
+    clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
+
+#   define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
+            if (ZDICT_clockSpan(displayClock) > refreshRate)  \
+            { displayClock = clock(); DISPLAY(__VA_ARGS__); \
+            if (notificationLevel>=4) fflush(stdout); } }
+
+    /* init */
+    DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
+    if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
+        result = ERROR(memory_allocation);
+        goto _cleanup;
+    }
+    if (minRatio < MINRATIO) minRatio = MINRATIO;
+    memset(doneMarks, 0, bufferSize+16);
+
+    /* limit sample set size (divsufsort limitation)*/
+    if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (U32)(ZDICT_MAX_SAMPLES_SIZE>>20));
+    while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
+
+    /* sort */
+    DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (U32)(bufferSize>>20));
+    {   int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
+        if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
+    }
+    suffix[bufferSize] = (int)bufferSize;   /* leads into noise */
+    suffix0[0] = (int)bufferSize;           /* leads into noise */
+    /* build reverse suffix sort */
+    {   size_t pos;
+        for (pos=0; pos < bufferSize; pos++)
+            reverseSuffix[suffix[pos]] = (U32)pos;
+        /* note filePos tracks borders between samples.
+           It's not used at this stage, but planned to become useful in a later update */
+        filePos[0] = 0;
+        for (pos=1; pos<nbFiles; pos++)
+            filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
+    }
+
+    DISPLAYLEVEL(2, "finding patterns ... \n");
+    DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
+
+    {   U32 cursor; for (cursor=0; cursor < bufferSize; ) {
+            dictItem solution;
+            if (doneMarks[cursor]) { cursor++; continue; }
+            solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
+            if (solution.length==0) { cursor++; continue; }
+            ZDICT_insertDictItem(dictList, dictListSize, solution);
+            cursor += solution.length;
+            DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
+    }   }
+
+_cleanup:
+    free(suffix0);
+    free(reverseSuffix);
+    free(doneMarks);
+    free(filePos);
+    return result;
+}
+
+
+static void ZDICT_fillNoise(void* buffer, size_t length)
+{
+    unsigned const prime1 = 2654435761U;
+    unsigned const prime2 = 2246822519U;
+    unsigned acc = prime1;
+    size_t p=0;;
+    for (p=0; p<length; p++) {
+        acc *= prime2;
+        ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
+    }
+}
+
+
+typedef struct
+{
+    ZSTD_CCtx* ref;
+    ZSTD_CCtx* zc;
+    void* workPlace;   /* must be ZSTD_BLOCKSIZE_ABSOLUTEMAX allocated */
+} EStats_ress_t;
+
+#define MAXREPOFFSET 1024
+
+static void ZDICT_countEStats(EStats_ress_t esr, ZSTD_parameters params,
+                            U32* countLit, U32* offsetcodeCount, U32* matchlengthCount, U32* litlengthCount, U32* repOffsets,
+                            const void* src, size_t srcSize, U32 notificationLevel)
+{
+    size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_ABSOLUTEMAX, 1 << params.cParams.windowLog);
+    size_t cSize;
+
+    if (srcSize > blockSizeMax) srcSize = blockSizeMax;   /* protection vs large samples */
+    {  size_t const errorCode = ZSTD_copyCCtx(esr.zc, esr.ref, 0);
+            if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_copyCCtx failed \n"); return; }
+    }
+    cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_ABSOLUTEMAX, src, srcSize);
+    if (ZSTD_isError(cSize)) { DISPLAYLEVEL(1, "warning : could not compress sample size %u \n", (U32)srcSize); return; }
+
+    if (cSize) {  /* if == 0; block is not compressible */
+        const seqStore_t* seqStorePtr = ZSTD_getSeqStore(esr.zc);
+
+        /* literals stats */
+        {   const BYTE* bytePtr;
+            for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
+                countLit[*bytePtr]++;
+        }
+
+        /* seqStats */
+        {   U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
+            ZSTD_seqToCodes(seqStorePtr);
+
+            {   const BYTE* codePtr = seqStorePtr->ofCode;
+                U32 u;
+                for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
+            }
+
+            {   const BYTE* codePtr = seqStorePtr->mlCode;
+                U32 u;
+                for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
+            }
+
+            {   const BYTE* codePtr = seqStorePtr->llCode;
+                U32 u;
+                for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
+            }
+
+            if (nbSeq >= 2) { /* rep offsets */
+                const seqDef* const seq = seqStorePtr->sequencesStart;
+                U32 offset1 = seq[0].offset - 3;
+                U32 offset2 = seq[1].offset - 3;
+                if (offset1 >= MAXREPOFFSET) offset1 = 0;
+                if (offset2 >= MAXREPOFFSET) offset2 = 0;
+                repOffsets[offset1] += 3;
+                repOffsets[offset2] += 1;
+    }   }   }
+}
+
+/*
+static size_t ZDICT_maxSampleSize(const size_t* fileSizes, unsigned nbFiles)
+{
+    unsigned u;
+    size_t max=0;
+    for (u=0; u<nbFiles; u++)
+        if (max < fileSizes[u]) max = fileSizes[u];
+    return max;
+}
+*/
+
+static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
+{
+    size_t total=0;
+    unsigned u;
+    for (u=0; u<nbFiles; u++) total += fileSizes[u];
+    return total;
+}
+
+typedef struct { U32 offset; U32 count; } offsetCount_t;
+
+static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
+{
+    U32 u;
+    table[ZSTD_REP_NUM].offset = val;
+    table[ZSTD_REP_NUM].count = count;
+    for (u=ZSTD_REP_NUM; u>0; u--) {
+        offsetCount_t tmp;
+        if (table[u-1].count >= table[u].count) break;
+        tmp = table[u-1];
+        table[u-1] = table[u];
+        table[u] = tmp;
+    }
+}
+
+
+#define OFFCODE_MAX 30  /* only applicable to first block */
+static size_t ZDICT_analyzeEntropy(void*  dstBuffer, size_t maxDstSize,
+                                   unsigned compressionLevel,
+                             const void*  srcBuffer, const size_t* fileSizes, unsigned nbFiles,
+                             const void* dictBuffer, size_t  dictBufferSize,
+                                   unsigned notificationLevel)
+{
+    U32 countLit[256];
+    HUF_CREATE_STATIC_CTABLE(hufTable, 255);
+    U32 offcodeCount[OFFCODE_MAX+1];
+    short offcodeNCount[OFFCODE_MAX+1];
+    U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
+    U32 matchLengthCount[MaxML+1];
+    short matchLengthNCount[MaxML+1];
+    U32 litLengthCount[MaxLL+1];
+    short litLengthNCount[MaxLL+1];
+    U32 repOffset[MAXREPOFFSET];
+    offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
+    EStats_ress_t esr;
+    ZSTD_parameters params;
+    U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
+    size_t pos = 0, errorCode;
+    size_t eSize = 0;
+    size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
+    size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
+    BYTE* dstPtr = (BYTE*)dstBuffer;
+
+    /* init */
+    esr.ref = ZSTD_createCCtx();
+    esr.zc = ZSTD_createCCtx();
+    esr.workPlace = malloc(ZSTD_BLOCKSIZE_ABSOLUTEMAX);
+    if (!esr.ref || !esr.zc || !esr.workPlace) {
+        eSize = ERROR(memory_allocation);
+        DISPLAYLEVEL(1, "Not enough memory \n");
+        goto _cleanup;
+    }
+    if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionary_wrong); goto _cleanup; }   /* too large dictionary */
+    for (u=0; u<256; u++) countLit[u]=1;   /* any character must be described */
+    for (u=0; u<=offcodeMax; u++) offcodeCount[u]=1;
+    for (u=0; u<=MaxML; u++) matchLengthCount[u]=1;
+    for (u=0; u<=MaxLL; u++) litLengthCount[u]=1;
+    memset(repOffset, 0, sizeof(repOffset));
+    repOffset[1] = repOffset[4] = repOffset[8] = 1;
+    memset(bestRepOffset, 0, sizeof(bestRepOffset));
+    if (compressionLevel==0) compressionLevel=g_compressionLevel_default;
+    params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
+    {   size_t const beginResult = ZSTD_compressBegin_advanced(esr.ref, dictBuffer, dictBufferSize, params, 0);
+            if (ZSTD_isError(beginResult)) {
+            eSize = ERROR(GENERIC);
+            DISPLAYLEVEL(1, "error : ZSTD_compressBegin_advanced failed \n");
+            goto _cleanup;
+    }   }
+
+    /* collect stats on all files */
+    for (u=0; u<nbFiles; u++) {
+        ZDICT_countEStats(esr, params,
+                          countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
+                         (const char*)srcBuffer + pos, fileSizes[u],
+                          notificationLevel);
+        pos += fileSizes[u];
+    }
+
+    /* analyze */
+    errorCode = HUF_buildCTable (hufTable, countLit, 255, huffLog);
+    if (HUF_isError(errorCode)) {
+        eSize = ERROR(GENERIC);
+        DISPLAYLEVEL(1, "HUF_buildCTable error \n");
+        goto _cleanup;
+    }
+    huffLog = (U32)errorCode;
+
+    /* looking for most common first offsets */
+    {   U32 offset;
+        for (offset=1; offset<MAXREPOFFSET; offset++)
+            ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
+    }
+    /* note : the result of this phase should be used to better appreciate the impact on statistics */
+
+    total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
+    errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax);
+    if (FSE_isError(errorCode)) {
+        eSize = ERROR(GENERIC);
+        DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
+        goto _cleanup;
+    }
+    Offlog = (U32)errorCode;
+
+    total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
+    errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML);
+    if (FSE_isError(errorCode)) {
+        eSize = ERROR(GENERIC);
+        DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
+        goto _cleanup;
+    }
+    mlLog = (U32)errorCode;
+
+    total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
+    errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL);
+    if (FSE_isError(errorCode)) {
+        eSize = ERROR(GENERIC);
+        DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
+        goto _cleanup;
+    }
+    llLog = (U32)errorCode;
+
+    /* write result to buffer */
+    {   size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
+        if (HUF_isError(hhSize)) {
+            eSize = ERROR(GENERIC);
+            DISPLAYLEVEL(1, "HUF_writeCTable error \n");
+            goto _cleanup;
+        }
+        dstPtr += hhSize;
+        maxDstSize -= hhSize;
+        eSize += hhSize;
+    }
+
+    {   size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
+        if (FSE_isError(ohSize)) {
+            eSize = ERROR(GENERIC);
+            DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
+            goto _cleanup;
+        }
+        dstPtr += ohSize;
+        maxDstSize -= ohSize;
+        eSize += ohSize;
+    }
+
+    {   size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
+        if (FSE_isError(mhSize)) {
+            eSize = ERROR(GENERIC);
+            DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
+            goto _cleanup;
+        }
+        dstPtr += mhSize;
+        maxDstSize -= mhSize;
+        eSize += mhSize;
+    }
+
+    {   size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
+        if (FSE_isError(lhSize)) {
+            eSize = ERROR(GENERIC);
+            DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
+            goto _cleanup;
+        }
+        dstPtr += lhSize;
+        maxDstSize -= lhSize;
+        eSize += lhSize;
+    }
+
+    if (maxDstSize<12) {
+        eSize = ERROR(GENERIC);
+        DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
+        goto _cleanup;
+    }
+# if 0
+    MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
+    MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
+    MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
+#else
+    /* at this stage, we don't use the result of "most common first offset",
+       as the impact of statistics is not properly evaluated */
+    MEM_writeLE32(dstPtr+0, repStartValue[0]);
+    MEM_writeLE32(dstPtr+4, repStartValue[1]);
+    MEM_writeLE32(dstPtr+8, repStartValue[2]);
+#endif
+    //dstPtr += 12;
+    eSize += 12;
+
+_cleanup:
+    ZSTD_freeCCtx(esr.ref);
+    ZSTD_freeCCtx(esr.zc);
+    free(esr.workPlace);
+
+    return eSize;
+}
+
+
+size_t ZDICT_addEntropyTablesFromBuffer_advanced(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
+                                                 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+                                                 ZDICT_params_t params)
+{
+    size_t hSize;
+    int const compressionLevel = (params.compressionLevel <= 0) ? g_compressionLevel_default : params.compressionLevel;
+    U32 const notificationLevel = params.notificationLevel;
+
+    /* dictionary header */
+    MEM_writeLE32(dictBuffer, ZSTD_DICT_MAGIC);
+    {   U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
+        U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
+        U32 const dictID = params.dictID ? params.dictID : compliantID;
+        MEM_writeLE32((char*)dictBuffer+4, dictID);
+    }
+    hSize = 8;
+
+    /* entropy tables */
+    DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
+    DISPLAYLEVEL(2, "statistics ... \n");
+    {   size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
+                                  compressionLevel,
+                                  samplesBuffer, samplesSizes, nbSamples,
+                                  (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
+                                  notificationLevel);
+        if (ZDICT_isError(eSize)) return eSize;
+        hSize += eSize;
+    }
+
+
+    if (hSize + dictContentSize < dictBufferCapacity)
+        memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
+    return MIN(dictBufferCapacity, hSize+dictContentSize);
+}
+
+
+/*! ZDICT_trainFromBuffer_unsafe() :
+*   Warning : `samplesBuffer` must be followed by noisy guard band.
+*   @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
+*/
+size_t ZDICT_trainFromBuffer_unsafe(
+                            void* dictBuffer, size_t maxDictSize,
+                            const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+                            ZDICT_params_t params)
+{
+    U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
+    dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
+    unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
+    unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
+    size_t const targetDictSize = maxDictSize;
+    size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
+    size_t dictSize = 0;
+    U32 const notificationLevel = params.notificationLevel;
+
+    /* checks */
+    if (!dictList) return ERROR(memory_allocation);
+    if (maxDictSize <= g_provision_entropySize + g_min_fast_dictContent) { free(dictList); return ERROR(dstSize_tooSmall); }
+    if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return 0; }   /* not enough source to create dictionary */
+
+    /* init */
+    ZDICT_initDictItem(dictList);
+
+    /* build dictionary */
+    ZDICT_trainBuffer(dictList, dictListSize,
+                    samplesBuffer, samplesBuffSize,
+                    samplesSizes, nbSamples,
+                    minRep, notificationLevel);
+
+    /* display best matches */
+    if (params.notificationLevel>= 3) {
+        U32 const nb = MIN(25, dictList[0].pos);
+        U32 const dictContentSize = ZDICT_dictSize(dictList);
+        U32 u;
+        DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", dictList[0].pos, dictContentSize);
+        DISPLAYLEVEL(3, "list %u best segments \n", nb);
+        for (u=1; u<=nb; u++) {
+            U32 pos = dictList[u].pos;
+            U32 length = dictList[u].length;
+            U32 printedLength = MIN(40, length);
+            DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
+                         u, length, pos, dictList[u].savings);
+            ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
+            DISPLAYLEVEL(3, "| \n");
+    }   }
+
+
+    /* create dictionary */
+    {   U32 dictContentSize = ZDICT_dictSize(dictList);
+        if (dictContentSize < targetDictSize/3) {
+            DISPLAYLEVEL(2, "!  warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (U32)maxDictSize);
+            if (minRep > MINRATIO) {
+                DISPLAYLEVEL(2, "!  consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
+                DISPLAYLEVEL(2, "!  note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
+            }
+            if (samplesBuffSize < 10 * targetDictSize)
+                DISPLAYLEVEL(2, "!  consider increasing the number of samples (total size : %u MB)\n", (U32)(samplesBuffSize>>20));
+        }
+
+        if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
+            U32 proposedSelectivity = selectivity-1;
+            while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
+            DISPLAYLEVEL(2, "!  note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (U32)maxDictSize);
+            DISPLAYLEVEL(2, "!  consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
+            DISPLAYLEVEL(2, "!  always test dictionary efficiency on samples \n");
+        }
+
+        /* limit dictionary size */
+        {   U32 const max = dictList->pos;   /* convention : nb of useful elts within dictList */
+            U32 currentSize = 0;
+            U32 n; for (n=1; n<max; n++) {
+                currentSize += dictList[n].length;
+                if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
+            }
+            dictList->pos = n;
+            dictContentSize = currentSize;
+        }
+
+        /* build dict content */
+        {   U32 u;
+            BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
+            for (u=1; u<dictList->pos; u++) {
+                U32 l = dictList[u].length;
+                ptr -= l;
+                if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); }   /* should not happen */
+                memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
+        }   }
+
+        dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
+                                                             samplesBuffer, samplesSizes, nbSamples,
+                                                             params);
+    }
+
+    /* clean up */
+    free(dictList);
+    return dictSize;
+}
+
+
+/* issue : samplesBuffer need to be followed by a noisy guard band.
+*  work around : duplicate the buffer, and add the noise */
+size_t ZDICT_trainFromBuffer_advanced(void* dictBuffer, size_t dictBufferCapacity,
+                                      const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+                                      ZDICT_params_t params)
+{
+    size_t result;
+    void* newBuff;
+    size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
+    if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0;   /* not enough content => no dictionary */
+
+    newBuff = malloc(sBuffSize + NOISELENGTH);
+    if (!newBuff) return ERROR(memory_allocation);
+
+    memcpy(newBuff, samplesBuffer, sBuffSize);
+    ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH);   /* guard band, for end of buffer condition */
+
+    result = ZDICT_trainFromBuffer_unsafe(
+                                        dictBuffer, dictBufferCapacity,
+                                        newBuff, samplesSizes, nbSamples,
+                                        params);
+    free(newBuff);
+    return result;
+}
+
+
+size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
+                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
+{
+    ZDICT_params_t params;
+    memset(&params, 0, sizeof(params));
+    return ZDICT_trainFromBuffer_advanced(dictBuffer, dictBufferCapacity,
+                                          samplesBuffer, samplesSizes, nbSamples,
+                                          params);
+}
+
+size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
+                                        const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
+{
+    ZDICT_params_t params;
+    memset(&params, 0, sizeof(params));
+    return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
+                                                     samplesBuffer, samplesSizes, nbSamples,
+                                                     params);
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/dictBuilder/zdict.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,111 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+#ifndef DICTBUILDER_H_001
+#define DICTBUILDER_H_001
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+
+/*======  Dependencies  ======*/
+#include <stddef.h>  /* size_t */
+
+
+/*======  Export for Windows  ======*/
+/*!
+*  ZSTD_DLL_EXPORT :
+*  Enable exporting of functions when building a Windows DLL
+*/
+#if defined(_WIN32) && defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
+#  define ZDICTLIB_API __declspec(dllexport)
+#else
+#  define ZDICTLIB_API
+#endif
+
+
+/*! ZDICT_trainFromBuffer() :
+    Train a dictionary from an array of samples.
+    Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
+    supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
+    The resulting dictionary will be saved into `dictBuffer`.
+    @return : size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+              or an error code, which can be tested with ZDICT_isError().
+    Tips : In general, a reasonable dictionary has a size of ~ 100 KB.
+           It's obviously possible to target smaller or larger ones, just by specifying different `dictBufferCapacity`.
+           In general, it's recommended to provide a few thousands samples, but this can vary a lot.
+           It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
+*/
+ZDICTLIB_API size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
+                       const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples);
+
+
+/*======   Helper functions   ======*/
+ZDICTLIB_API unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize);  /**< extracts dictID; @return zero if error (not a valid dictionary) */
+ZDICTLIB_API unsigned ZDICT_isError(size_t errorCode);
+ZDICTLIB_API const char* ZDICT_getErrorName(size_t errorCode);
+
+
+
+#ifdef ZDICT_STATIC_LINKING_ONLY
+
+/* ====================================================================================
+ * The definitions in this section are considered experimental.
+ * They should never be used with a dynamic library, as they may change in the future.
+ * They are provided for advanced usages.
+ * Use them only in association with static linking.
+ * ==================================================================================== */
+
+typedef struct {
+    unsigned selectivityLevel;   /* 0 means default; larger => select more => larger dictionary */
+    int      compressionLevel;   /* 0 means default; target a specific zstd compression level */
+    unsigned notificationLevel;  /* Write to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */
+    unsigned dictID;             /* 0 means auto mode (32-bits random value); other : force dictID value */
+    unsigned reserved[2];        /* reserved space for future parameters */
+} ZDICT_params_t;
+
+
+/*! ZDICT_trainFromBuffer_advanced() :
+    Same as ZDICT_trainFromBuffer() with control over more parameters.
+    `parameters` is optional and can be provided with values set to 0 to mean "default".
+    @return : size of dictionary stored into `dictBuffer` (<= `dictBufferSize`),
+              or an error code, which can be tested by ZDICT_isError().
+    note : ZDICT_trainFromBuffer_advanced() will send notifications into stderr if instructed to, using notificationLevel>0.
+*/
+size_t ZDICT_trainFromBuffer_advanced(void* dictBuffer, size_t dictBufferCapacity,
+                                const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+                                ZDICT_params_t parameters);
+
+
+/*! ZDICT_addEntropyTablesFromBuffer() :
+
+    Given a content-only dictionary (built using any 3rd party algorithm),
+    add entropy tables computed from an array of samples.
+    Samples must be stored concatenated in a flat buffer `samplesBuffer`,
+    supplied with an array of sizes `samplesSizes`, providing the size of each sample in order.
+
+    The input dictionary content must be stored *at the end* of `dictBuffer`.
+    Its size is `dictContentSize`.
+    The resulting dictionary with added entropy tables will be *written back to `dictBuffer`*,
+    starting from its beginning.
+    @return : size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`).
+*/
+size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
+                                        const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples);
+
+
+
+#endif   /* ZDICT_STATIC_LINKING_ONLY */
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif   /* DICTBUILDER_H_001 */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/contrib/python-zstandard/zstd/zstd.h	Thu Nov 10 21:45:29 2016 -0800
@@ -0,0 +1,640 @@
+/*
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+#ifndef ZSTD_H_235446
+#define ZSTD_H_235446
+
+#if defined (__cplusplus)
+extern "C" {
+#endif
+
+/* ======   Dependency   ======*/
+#include <stddef.h>   /* size_t */
+
+
+/* ======  Export for Windows  ======*/
+/*
+*  ZSTD_DLL_EXPORT :
+*  Enable exporting of functions when building a Windows DLL
+*/
+#if defined(_WIN32) && defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
+#  define ZSTDLIB_API __declspec(dllexport)
+#else
+#  define ZSTDLIB_API
+#endif
+
+
+/*******************************************************************************************************
+  Introduction
+
+  zstd, short for Zstandard, is a fast lossless compression algorithm, targeting real-time compression scenarios
+  at zlib-level and better compression ratios. The zstd compression library provides in-memory compression and
+  decompression functions. The library supports compression levels from 1 up to ZSTD_maxCLevel() which is 22.
+  Levels >= 20, labelled `--ultra`, should be used with caution, as they require more memory.
+  Compression can be done in:
+    - a single step (described as Simple API)
+    - a single step, reusing a context (described as Explicit memory management)
+    - unbounded multiple steps (described as Streaming compression)
+  The compression ratio achievable on small data can be highly improved using compression with a dictionary in:
+    - a single step (described as Simple dictionary API)
+    - a single step, reusing a dictionary (described as Fast dictionary API)
+
+  Advanced experimental functions can be accessed using #define ZSTD_STATIC_LINKING_ONLY before including zstd.h.
+  These APIs shall never be used with a dynamic library.
+  They are not "stable", their definition may change in the future. Only static linking is allowed.
+*********************************************************************************************************/
+
+/*------   Version   ------*/
+ZSTDLIB_API unsigned ZSTD_versionNumber (void);  /**< returns version number of ZSTD */
+
+#define ZSTD_VERSION_MAJOR    1
+#define ZSTD_VERSION_MINOR    1
+#define ZSTD_VERSION_RELEASE  1
+
+#define ZSTD_LIB_VERSION ZSTD_VERSION_MAJOR.ZSTD_VERSION_MINOR.ZSTD_VERSION_RELEASE
+#define ZSTD_QUOTE(str) #str
+#define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str)
+#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION)
+
+#define ZSTD_VERSION_NUMBER  (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
+
+
+/***************************************
+*  Simple API
+***************************************/
+/*! ZSTD_compress() :
+    Compresses `src` content as a single zstd compressed frame into already allocated `dst`.
+    Hint : compression runs faster if `dstCapacity` >=  `ZSTD_compressBound(srcSize)`.
+    @return : compressed size written into `dst` (<= `dstCapacity),
+              or an error code if it fails (which can be tested using ZSTD_isError()) */
+ZSTDLIB_API size_t ZSTD_compress( void* dst, size_t dstCapacity,
+                            const void* src, size_t srcSize,
+                                  int compressionLevel);
+
+/*! ZSTD_decompress() :
+    `compressedSize` : must be the _exact_ size of a single compressed frame.
+    `dstCapacity` is an upper bound of originalSize.
+    If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data.
+    @return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
+              or an errorCode if it fails (which can be tested using ZSTD_isError()) */
+ZSTDLIB_API size_t ZSTD_decompress( void* dst, size_t dstCapacity,
+                              const void* src, size_t compressedSize);
+
+/*! ZSTD_getDecompressedSize() :
+*   'src' is the start of a zstd compressed frame.
+*   @return : content size to be decompressed, as a 64-bits value _if known_, 0 otherwise.
+*    note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode.
+*             When `return==0`, data to decompress could be any size.
+*             In which case, it's necessary to use streaming mode to decompress data.
+*             Optionally, application can still use ZSTD_decompress() while relying on implied limits.
+*             (For example, data may be necessarily cut into blocks <= 16 KB).
+*    note 2 : decompressed size is always present when compression is done with ZSTD_compress()
+*    note 3 : decompressed size can be very large (64-bits value),
+*             potentially larger than what local system can handle as a single memory segment.
+*             In which case, it's necessary to use streaming mode to decompress data.
+*    note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified.
+*             Always ensure result fits within application's authorized limits.
+*             Each application can set its own limits.
+*    note 5 : when `return==0`, if precise failure cause is needed, use ZSTD_getFrameParams() to know more. */
+ZSTDLIB_API unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize);
+
+
+/*======  Helper functions  ======*/
+ZSTDLIB_API int         ZSTD_maxCLevel(void);               /*!< maximum compression level available */
+ZSTDLIB_API size_t      ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case scenario */
+ZSTDLIB_API unsigned    ZSTD_isError(size_t code);          /*!< tells if a `size_t` function result is an error code */
+ZSTDLIB_API const char* ZSTD_getErrorName(size_t code);     /*!< provides readable string from an error code */
+
+
+/***************************************
+*  Explicit memory management
+***************************************/
+/*= Compression context
+*   When compressing many messages / blocks,
+*   it is recommended to allocate a context just once, and re-use it for each successive compression operation.
+*   This will make the situation much easier for the system's memory.
+*   Use one context per thread for parallel execution in multi-threaded environments. */
+typedef struct ZSTD_CCtx_s ZSTD_CCtx;
+ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx(void);
+ZSTDLIB_API size_t     ZSTD_freeCCtx(ZSTD_CCtx* cctx);
+
+/*! ZSTD_compressCCtx() :
+    Same as ZSTD_compress(), requires an allocated ZSTD_CCtx (see ZSTD_createCCtx()) */
+ZSTDLIB_API size_t ZSTD_compressCCtx(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel);
+
+/*= Decompression context */
+typedef struct ZSTD_DCtx_s ZSTD_DCtx;
+ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx(void);
+ZSTDLIB_API size_t     ZSTD_freeDCtx(ZSTD_DCtx* dctx);
+
+/*! ZSTD_decompressDCtx() :
+*   Same as ZSTD_decompress(), requires an allocated ZSTD_DCtx (see ZSTD_createDCtx()) */
+ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+/**************************
+*  Simple dictionary API
+***************************/
+/*! ZSTD_compress_usingDict() :
+*   Compression using a predefined Dictionary (see dictBuilder/zdict.h).
+*   Note : This function load the dictionary, resulting in significant startup delay. */
+ZSTDLIB_API size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx,
+                                           void* dst, size_t dstCapacity,
+                                     const void* src, size_t srcSize,
+                                     const void* dict,size_t dictSize,
+                                           int compressionLevel);
+
+/*! ZSTD_decompress_usingDict() :
+*   Decompression using a predefined Dictionary (see dictBuilder/zdict.h).
+*   Dictionary must be identical to the one used during compression.
+*   Note : This function load the dictionary, resulting in significant startup delay */
+ZSTDLIB_API size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
+                                             void* dst, size_t dstCapacity,
+                                       const void* src, size_t srcSize,
+                                       const void* dict,size_t dictSize);
+
+
+/****************************
+*  Fast dictionary API
+****************************/
+typedef struct ZSTD_CDict_s ZSTD_CDict;
+
+/*! ZSTD_createCDict() :
+*   When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once.
+*   ZSTD_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay.
+*   ZSTD_CDict can be created once and used by multiple threads concurrently, as its usage is read-only.
+*   `dict` can be released after ZSTD_CDict creation */
+ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel);
+
+/*! ZSTD_freeCDict() :
+*   Function frees memory allocated by ZSTD_createCDict() */
+ZSTDLIB_API size_t      ZSTD_freeCDict(ZSTD_CDict* CDict);
+
+/*! ZSTD_compress_usingCDict() :
+*   Compression using a digested Dictionary.
+*   Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
+*   Note that compression level is decided during dictionary creation */
+ZSTDLIB_API size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
+                                            void* dst, size_t dstCapacity,
+                                      const void* src, size_t srcSize,
+                                      const ZSTD_CDict* cdict);
+
+
+typedef struct ZSTD_DDict_s ZSTD_DDict;
+
+/*! ZSTD_createDDict() :
+*   Create a digested dictionary, ready to start decompression operation without startup delay.
+*   `dict` can be released after creation */
+ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize);
+
+/*! ZSTD_freeDDict() :
+*   Function frees memory allocated with ZSTD_createDDict() */
+ZSTDLIB_API size_t      ZSTD_freeDDict(ZSTD_DDict* ddict);
+
+/*! ZSTD_decompress_usingDDict() :
+*   Decompression using a digested Dictionary
+*   Faster startup than ZSTD_decompress_usingDict(), recommended when same dictionary is used multiple times. */
+ZSTDLIB_API size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
+                                              void* dst, size_t dstCapacity,
+                                        const void* src, size_t srcSize,
+                                        const ZSTD_DDict* ddict);
+
+
+/****************************
+*  Streaming
+****************************/
+
+typedef struct ZSTD_inBuffer_s {
+  const void* src;    /**< start of input buffer */
+  size_t size;        /**< size of input buffer */
+  size_t pos;         /**< position where reading stopped. Will be updated. Necessarily 0 <= pos <= size */
+} ZSTD_inBuffer;
+
+typedef struct ZSTD_outBuffer_s {
+  void*  dst;         /**< start of output buffer */
+  size_t size;        /**< size of output buffer */
+  size_t pos;         /**< position where writing stopped. Will be updated. Necessarily 0 <= pos <= size */
+} ZSTD_outBuffer;
+
+
+
+/*-***********************************************************************
+*  Streaming compression - HowTo
+*
+*  A ZSTD_CStream object is required to track streaming operation.
+*  Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources.
+*  ZSTD_CStream objects can be reused multiple times on consecutive compression operations.
+*  It is recommended to re-use ZSTD_CStream in situations where many streaming operations will be achieved consecutively,
+*  since it will play nicer with system's memory, by re-using already allocated memory.
+*  Use one separate ZSTD_CStream per thread for parallel execution.
+*
+*  Start a new compression by initializing ZSTD_CStream.
+*  Use ZSTD_initCStream() to start a new compression operation.
+*  Use ZSTD_initCStream_usingDict() for a compression which requires a dictionary.
+*
+*  Use ZSTD_compressStream() repetitively to consume input stream.
+*  The function will automatically update both `pos` fields.
+*  Note that it may not consume the entire input, in which case `pos < size`,
+*  and it's up to the caller to present again remaining data.
+*  @return : a size hint, preferred nb of bytes to use as input for next function call
+*           (it's just a hint, to help latency a little, any other value will work fine)
+*           (note : the size hint is guaranteed to be <= ZSTD_CStreamInSize() )
+*            or an error code, which can be tested using ZSTD_isError().
+*
+*  At any moment, it's possible to flush whatever data remains within buffer, using ZSTD_flushStream().
+*  `output->pos` will be updated.
+*  Note some content might still be left within internal buffer if `output->size` is too small.
+*  @return : nb of bytes still present within internal buffer (0 if it's empty)
+*            or an error code, which can be tested using ZSTD_isError().
+*
+*  ZSTD_endStream() instructs to finish a frame.
+*  It will perform a flush and write frame epilogue.
+*  The epilogue is required for decoders to consider a frame completed.
+*  Similar to ZSTD_flushStream(), it may not be able to flush the full content if `output->size` is too small.
+*  In which case, call again ZSTD_endStream() to complete the flush.
+*  @return : nb of bytes still present within internal buffer (0 if it's empty)
+*            or an error code, which can be tested using ZSTD_isError().
+*
+* *******************************************************************/
+
+/*=====   Streaming compression functions   ======*/
+typedef struct ZSTD_CStream_s ZSTD_CStream;
+ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream(void);
+ZSTDLIB_API size_t ZSTD_freeCStream(ZSTD_CStream* zcs);
+ZSTDLIB_API size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel);
+ZSTDLIB_API size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
+ZSTDLIB_API size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
+ZSTDLIB_API size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output);
+
+ZSTDLIB_API size_t ZSTD_CStreamInSize(void);    /**< recommended size for input buffer */
+ZSTDLIB_API size_t ZSTD_CStreamOutSize(void);   /**< recommended size for output buffer. Guarantee to successfully flush at least one complete compressed block in all circumstances. */
+
+
+
+/*-***************************************************************************
+*  Streaming decompression - HowTo
+*
+*  A ZSTD_DStream object is required to track streaming operations.
+*  Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources.
+*  ZSTD_DStream objects can be re-used multiple times.
+*
+*  Use ZSTD_initDStream() to start a new decompression operation,
+*   or ZSTD_initDStream_usingDict() if decompression requires a dictionary.
+*   @return : recommended first input size
+*
+*  Use ZSTD_decompressStream() repetitively to consume your input.
+*  The function will update both `pos` fields.
+*  If `input.pos < input.size`, some input has not been consumed.
+*  It's up to the caller to present again remaining data.
+*  If `output.pos < output.size`, decoder has flushed everything it could.
+*  @return : 0 when a frame is completely decoded and fully flushed,
+*            an error code, which can be tested using ZSTD_isError(),
+*            any other value > 0, which means there is still some work to do to complete the frame.
+*            The return value is a suggested next input size (just an hint, to help latency).
+* *******************************************************************************/
+
+/*=====   Streaming decompression functions   =====*/
+typedef struct ZSTD_DStream_s ZSTD_DStream;
+ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream(void);
+ZSTDLIB_API size_t ZSTD_freeDStream(ZSTD_DStream* zds);
+ZSTDLIB_API size_t ZSTD_initDStream(ZSTD_DStream* zds);
+ZSTDLIB_API size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
+
+ZSTDLIB_API size_t ZSTD_DStreamInSize(void);    /*!< recommended size for input buffer */
+ZSTDLIB_API size_t ZSTD_DStreamOutSize(void);   /*!< recommended size for output buffer. Guarantee to successfully flush at least one complete block in all circumstances. */
+
+
+
+#ifdef ZSTD_STATIC_LINKING_ONLY
+
+/****************************************************************************************
+ * START OF ADVANCED AND EXPERIMENTAL FUNCTIONS
+ * The definitions in this section are considered experimental.
+ * They should never be used with a dynamic library, as they may change in the future.
+ * They are provided for advanced usages.
+ * Use them only in association with static linking.
+ * ***************************************************************************************/
+
+/* --- Constants ---*/
+#define ZSTD_MAGICNUMBER            0xFD2FB528   /* v0.8 */
+#define ZSTD_MAGIC_SKIPPABLE_START  0x184D2A50U
+
+#define ZSTD_WINDOWLOG_MAX_32  25
+#define ZSTD_WINDOWLOG_MAX_64  27
+#define ZSTD_WINDOWLOG_MAX    ((U32)(MEM_32bits() ? ZSTD_WINDOWLOG_MAX_32 : ZSTD_WINDOWLOG_MAX_64))
+#define ZSTD_WINDOWLOG_MIN     10
+#define ZSTD_HASHLOG_MAX       ZSTD_WINDOWLOG_MAX
+#define ZSTD_HASHLOG_MIN        6
+#define ZSTD_CHAINLOG_MAX     (ZSTD_WINDOWLOG_MAX+1)
+#define ZSTD_CHAINLOG_MIN      ZSTD_HASHLOG_MIN
+#define ZSTD_HASHLOG3_MAX      17
+#define ZSTD_SEARCHLOG_MAX    (ZSTD_WINDOWLOG_MAX-1)
+#define ZSTD_SEARCHLOG_MIN      1
+#define ZSTD_SEARCHLENGTH_MAX   7   /* only for ZSTD_fast, other strategies are limited to 6 */
+#define ZSTD_SEARCHLENGTH_MIN   3   /* only for ZSTD_btopt, other strategies are limited to 4 */
+#define ZSTD_TARGETLENGTH_MIN   4
+#define ZSTD_TARGETLENGTH_MAX 999
+
+#define ZSTD_FRAMEHEADERSIZE_MAX 18    /* for static allocation */
+static const size_t ZSTD_frameHeaderSize_prefix = 5;
+static const size_t ZSTD_frameHeaderSize_min = 6;
+static const size_t ZSTD_frameHeaderSize_max = ZSTD_FRAMEHEADERSIZE_MAX;
+static const size_t ZSTD_skippableHeaderSize = 8;  /* magic number + skippable frame length */
+
+
+/*--- Advanced types ---*/
+typedef enum { ZSTD_fast, ZSTD_dfast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2, ZSTD_btopt, ZSTD_btopt2 } ZSTD_strategy;   /* from faster to stronger */
+
+typedef struct {
+    unsigned windowLog;      /**< largest match distance : larger == more compression, more memory needed during decompression */
+    unsigned chainLog;       /**< fully searched segment : larger == more compression, slower, more memory (useless for fast) */
+    unsigned hashLog;        /**< dispatch table : larger == faster, more memory */
+    unsigned searchLog;      /**< nb of searches : larger == more compression, slower */
+    unsigned searchLength;   /**< match length searched : larger == faster decompression, sometimes less compression */
+    unsigned targetLength;   /**< acceptable match size for optimal parser (only) : larger == more compression, slower */
+    ZSTD_strategy strategy;
+} ZSTD_compressionParameters;
+
+typedef struct {
+    unsigned contentSizeFlag; /**< 1: content size will be in frame header (if known). */
+    unsigned checksumFlag;    /**< 1: will generate a 22-bits checksum at end of frame, to be used for error detection by decompressor */
+    unsigned noDictIDFlag;    /**< 1: no dict ID will be saved into frame header (if dictionary compression) */
+} ZSTD_frameParameters;
+
+typedef struct {
+    ZSTD_compressionParameters cParams;
+    ZSTD_frameParameters fParams;
+} ZSTD_parameters;
+
+/*= Custom memory allocation functions */
+typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
+typedef void  (*ZSTD_freeFunction) (void* opaque, void* address);
+typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
+
+
+/***************************************
+*  Advanced compression functions
+***************************************/
+/*! ZSTD_estimateCCtxSize() :
+ *  Gives the amount of memory allocated for a ZSTD_CCtx given a set of compression parameters.
+ *  `frameContentSize` is an optional parameter, provide `0` if unknown */
+ZSTDLIB_API size_t ZSTD_estimateCCtxSize(ZSTD_compressionParameters cParams);
+
+/*! ZSTD_createCCtx_advanced() :
+ *  Create a ZSTD compression context using external alloc and free functions */
+ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
+
+/*! ZSTD_sizeofCCtx() :
+ *  Gives the amount of memory used by a given ZSTD_CCtx */
+ZSTDLIB_API size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx);
+
+/*! ZSTD_createCDict_advanced() :
+ *  Create a ZSTD_CDict using external alloc and free, and customized compression parameters */
+ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
+                                                  ZSTD_parameters params, ZSTD_customMem customMem);
+
+/*! ZSTD_sizeof_CDict() :
+ *  Gives the amount of memory used by a given ZSTD_sizeof_CDict */
+ZSTDLIB_API size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict);
+
+/*! ZSTD_getParams() :
+*   same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of a `ZSTD_compressionParameters`.
+*   All fields of `ZSTD_frameParameters` are set to default (0) */
+ZSTDLIB_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSize, size_t dictSize);
+
+/*! ZSTD_getCParams() :
+*   @return ZSTD_compressionParameters structure for a selected compression level and srcSize.
+*   `srcSize` value is optional, select 0 if not known */
+ZSTDLIB_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSize, size_t dictSize);
+
+/*! ZSTD_checkCParams() :
+*   Ensure param values remain within authorized range */
+ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
+
+/*! ZSTD_adjustCParams() :
+*   optimize params for a given `srcSize` and `dictSize`.
+*   both values are optional, select `0` if unknown. */
+ZSTDLIB_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize);
+
+/*! ZSTD_compress_advanced() :
+*   Same as ZSTD_compress_usingDict(), with fine-tune control of each compression parameter */
+ZSTDLIB_API size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx,
+                                           void* dst, size_t dstCapacity,
+                                     const void* src, size_t srcSize,
+                                     const void* dict,size_t dictSize,
+                                           ZSTD_parameters params);
+
+
+/*--- Advanced decompression functions ---*/
+
+/*! ZSTD_estimateDCtxSize() :
+ *  Gives the potential amount of memory allocated to create a ZSTD_DCtx */
+ZSTDLIB_API size_t ZSTD_estimateDCtxSize(void);
+
+/*! ZSTD_createDCtx_advanced() :
+ *  Create a ZSTD decompression context using external alloc and free functions */
+ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
+
+/*! ZSTD_sizeof_DCtx() :
+ *  Gives the amount of memory used by a given ZSTD_DCtx */
+ZSTDLIB_API size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx);
+
+/*! ZSTD_sizeof_DDict() :
+ *  Gives the amount of memory used by a given ZSTD_DDict */
+ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict);
+
+
+/********************************************************************
+*  Advanced streaming functions
+********************************************************************/
+
+/*=====   Advanced Streaming compression functions  =====*/
+ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem);
+ZSTDLIB_API size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel);
+ZSTDLIB_API size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize,
+                                             ZSTD_parameters params, unsigned long long pledgedSrcSize);  /**< pledgedSrcSize is optional and can be zero == unknown */
+ZSTDLIB_API size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict);  /**< note : cdict will just be referenced, and must outlive compression session */
+ZSTDLIB_API size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize);  /**< re-use compression parameters from previous init; skip dictionary loading stage; zcs must be init at least once before */
+ZSTDLIB_API size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs);
+
+
+/*=====   Advanced Streaming decompression functions  =====*/
+typedef enum { ZSTDdsp_maxWindowSize } ZSTD_DStreamParameter_e;
+ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem);
+ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize);
+ZSTDLIB_API size_t ZSTD_setDStreamParameter(ZSTD_DStream* zds, ZSTD_DStreamParameter_e paramType, unsigned paramValue);
+ZSTDLIB_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict);  /**< note : ddict will just be referenced, and must outlive decompression session */
+ZSTDLIB_API size_t ZSTD_resetDStream(ZSTD_DStream* zds);  /**< re-use decompression parameters from previous init; saves dictionary loading */
+ZSTDLIB_API size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds);
+
+
+/*********************************************************************
+*  Buffer-less and synchronous inner streaming functions
+*
+*  This is an advanced API, giving full control over buffer management, for users which need direct control over memory.
+*  But it's also a complex one, with many restrictions (documented below).
+*  Prefer using normal streaming API for an easier experience
+********************************************************************* */
+
+/**
+  Buffer-less streaming compression (synchronous mode)
+
+  A ZSTD_CCtx object is required to track streaming operations.
+  Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource.
+  ZSTD_CCtx object can be re-used multiple times within successive compression operations.
+
+  Start by initializing a context.
+  Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression,
+  or ZSTD_compressBegin_advanced(), for finer parameter control.
+  It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx()
+
+  Then, consume your input using ZSTD_compressContinue().
+  There are some important considerations to keep in mind when using this advanced function :
+  - ZSTD_compressContinue() has no internal buffer. It uses externally provided buffer only.
+  - Interface is synchronous : input is consumed entirely and produce 1+ (or more) compressed blocks.
+  - Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario.
+    Worst case evaluation is provided by ZSTD_compressBound().
+    ZSTD_compressContinue() doesn't guarantee recover after a failed compression.
+  - ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog).
+    It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks)
+  - ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps.
+    In which case, it will "discard" the relevant memory section from its history.
+
+  Finish a frame with ZSTD_compressEnd(), which will write the last block(s) and optional checksum.
+  It's possible to use a NULL,0 src content, in which case, it will write a final empty block to end the frame,
+  Without last block mark, frames will be considered unfinished (broken) by decoders.
+
+  You can then reuse `ZSTD_CCtx` (ZSTD_compressBegin()) to compress some new frame.
+*/
+
+/*=====   Buffer-less streaming compression functions  =====*/
+ZSTDLIB_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
+ZSTDLIB_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
+ZSTDLIB_API size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize);
+ZSTDLIB_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize);
+ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+
+
+
+/*-
+  Buffer-less streaming decompression (synchronous mode)
+
+  A ZSTD_DCtx object is required to track streaming operations.
+  Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
+  A ZSTD_DCtx object can be re-used multiple times.
+
+  First typical operation is to retrieve frame parameters, using ZSTD_getFrameParams().
+  It fills a ZSTD_frameParams structure which provide important information to correctly decode the frame,
+  such as the minimum rolling buffer size to allocate to decompress data (`windowSize`),
+  and the dictionary ID used.
+  (Note : content size is optional, it may not be present. 0 means : content size unknown).
+  Note that these values could be wrong, either because of data malformation, or because an attacker is spoofing deliberate false information.
+  As a consequence, check that values remain within valid application range, especially `windowSize`, before allocation.
+  Each application can set its own limit, depending on local restrictions. For extended interoperability, it is recommended to support at least 8 MB.
+  Frame parameters are extracted from the beginning of the compressed frame.
+  Data fragment must be large enough to ensure successful decoding, typically `ZSTD_frameHeaderSize_max` bytes.
+  @result : 0 : successful decoding, the `ZSTD_frameParams` structure is correctly filled.
+           >0 : `srcSize` is too small, please provide at least @result bytes on next attempt.
+           errorCode, which can be tested using ZSTD_isError().
+
+  Start decompression, with ZSTD_decompressBegin() or ZSTD_decompressBegin_usingDict().
+  Alternatively, you can copy a prepared context, using ZSTD_copyDCtx().
+
+  Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
+  ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize' to ZSTD_decompressContinue().
+  ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will fail.
+
+  @result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity).
+  It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some metadata item.
+  It can also be an error code, which can be tested with ZSTD_isError().
+
+  ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize`.
+  They should preferably be located contiguously, prior to current block.
+  Alternatively, a round buffer of sufficient size is also possible. Sufficient size is determined by frame parameters.
+  ZSTD_decompressContinue() is very sensitive to contiguity,
+  if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place,
+  or that previous contiguous segment is large enough to properly handle maximum back-reference.
+
+  A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
+  Context can then be reset to start a new decompression.
+
+  Note : it's possible to know if next input to present is a header or a block, using ZSTD_nextInputType().
+  This information is not required to properly decode a frame.
+
+  == Special case : skippable frames ==
+
+  Skippable frames allow integration of user-defined data into a flow of concatenated frames.
+  Skippable frames will be ignored (skipped) by a decompressor. The format of skippable frames is as follows :
+  a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F
+  b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
+  c) Frame Content - any content (User Data) of length equal to Frame Size
+  For skippable frames ZSTD_decompressContinue() always returns 0.
+  For skippable frames ZSTD_getFrameParams() returns fparamsPtr->windowLog==0 what means that a frame is skippable.
+  It also returns Frame Size as fparamsPtr->frameContentSize.
+*/
+
+typedef struct {
+    unsigned long long frameContentSize;
+    unsigned windowSize;
+    unsigned dictID;
+    unsigned checksumFlag;
+} ZSTD_frameParams;
+
+/*=====   Buffer-less streaming decompression functions  =====*/
+ZSTDLIB_API size_t ZSTD_getFrameParams(ZSTD_frameParams* fparamsPtr, const void* src, size_t srcSize);   /**< doesn't consume input, see details below */
+ZSTDLIB_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx);
+ZSTDLIB_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
+ZSTDLIB_API void   ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx);
+ZSTDLIB_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
+ZSTDLIB_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e;
+ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx);
+
+/**
+    Block functions
+
+    Block functions produce and decode raw zstd blocks, without frame metadata.
+    Frame metadata cost is typically ~18 bytes, which can be non-negligible for very small blocks (< 100 bytes).
+    User will have to take in charge required information to regenerate data, such as compressed and content sizes.
+
+    A few rules to respect :
+    - Compressing and decompressing require a context structure
+      + Use ZSTD_createCCtx() and ZSTD_createDCtx()
+    - It is necessary to init context before starting
+      + compression : ZSTD_compressBegin()
+      + decompression : ZSTD_decompressBegin()
+      + variants _usingDict() are also allowed
+      + copyCCtx() and copyDCtx() work too
+    - Block size is limited, it must be <= ZSTD_getBlockSizeMax()
+      + If you need to compress more, cut data into multiple blocks
+      + Consider using the regular ZSTD_compress() instead, as frame metadata costs become negligible when source size is large.
+    - When a block is considered not compressible enough, ZSTD_compressBlock() result will be zero.
+      In which case, nothing is produced into `dst`.
+      + User must test for such outcome and deal directly with uncompressed data
+      + ZSTD_decompressBlock() doesn't accept uncompressed data as input !!!
+      + In case of multiple successive blocks, decoder must be informed of uncompressed block existence to follow proper history.
+        Use ZSTD_insertBlock() in such a case.
+*/
+
+#define ZSTD_BLOCKSIZE_ABSOLUTEMAX (128 * 1024)   /* define, for static allocation */
+/*=====   Raw zstd block functions  =====*/
+ZSTDLIB_API size_t ZSTD_getBlockSizeMax(ZSTD_CCtx* cctx);
+ZSTDLIB_API size_t ZSTD_compressBlock  (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
+ZSTDLIB_API size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize);  /**< insert block into `dctx` history. Useful for uncompressed blocks */
+
+
+#endif   /* ZSTD_STATIC_LINKING_ONLY */
+
+#if defined (__cplusplus)
+}
+#endif
+
+#endif  /* ZSTD_H_235446 */